STEEL JOIST REPORT

For Open Web Steel Joist 18K3SP x 22'-0"

Project: Demo
Location:
Job num.: T001

Mark: J-1

Submitted by:

$W(D L)=66.000$
$W(L L)=316.000$ $W(D L+L L)=382.000$

LEGEND:

O Top Bridging
O Bottom Bridging
O Bottom UpLift Bridging (Both End First V)

Joist name: 18K3SP

Quantity top chord members=13
Quantity bottom chord Members=12
Quantity end members=2
Quantity aux. web members=2
Quantity interior web members=20
Quantity vertical web members=0
Quantity reinforcement web members=0
Total members $=49$
Total nodes=27
Quantity top chord node=14
Quantity Bottom chord node=13
Modulus of elasticity of steel=29,000 ksi(200,000 MPa)

Control effective depth $=17.220$ in $(437.388 \mathrm{~mm})$

JoistLab v6 by All View System (www.allviewsystem.com)

18K3SP x 21'-8" (OVL 22'-0")
MARK ~ J-1
MAKE ~ ONE

Project: Demo

Job Number: T001

R7/8"diam. xCut Total Lenght=3'-0 11/16"
Outside Arc=2 5/16" Long; Inside Radius=2 1/2" diam. Interior Angle=IA=126.826 Deg.
Make $=\mathrm{ONE}$

R7/8"diam. xCut Total Lenght=3'-1 1/8"
Outside Arco $=25 / 16^{\prime \prime}$ Long; Inside Radius=2 1/2" diam. Interior Angle $=1 \mathrm{~A}=126.826 \mathrm{Deg}$ Make $=$ ONE

2 - V1 - R1/2 x $3^{\prime}-3$ 3/8" ($A=1^{\prime}-415 / 16$ "; B=1'-7 5/16"; R=1 3/16")
6 - V2 - R5/8 x 3'-3 7/16" (A=1'-4 15/16"; B=1'-7 3/8"; R=1 1/16")
2 - V3 - R3/4 x 3'-3 1/2" (A=1'-4 15/16"; B=1'-7 7/16"; R= 15/16")

Bill of Material

Project Name: Demo Job Number: T001

Joist Name: 18K3SP x 22'-0" Joist Mark: J-1 Quantity: 1

Mark	Qty	Designation	Type	Lenght	Reinforcement	Type	Lenght	Weight	Fy	Remark
CHORDS										
TC	2	L1 1/2x1 1/2x1/8	2 Anges	22'-0"	N/A	N/A	N/A	54.120Lbs	50ksi	Top Chord
BC	2	L1 1/4x1 1/4x1/8	2 Anges	17'-8"	N/A	N/A	N/A	35.687Lbs	50ksi	Bottom Chord
WEB MEMBERS										
LE	1	R7/8	Rod	3'0 11/16"	N/A	N/A	N/A	6.242Lbs	50ksi	Left end member
RE	1	R7/8	Rod	2'-10 9/16"	N/A	N/A	N/A	41.051Lbs	50ksi	Right end member
LA	1	R1/2	Rod	1'-9 15/16"	N/A	N/A	N/A	1.219Lbs	50ksi	Left aux. member
RA	1	R1/2	Rod	1'-9 15/16"	N/A	N/A	N/A	1.219Lbs	50ksi	Right aux. member
V WEB MEMBERS										
V1	2	R1/2	Rod/Rod	3'-3 3/8"	none/none	N/A	N/A	4.375Lbs	50ksi	A=1'-4 15/16";B=1'-7 5/16";R=1 3/16"
V2	6	R5/8	Rod/Rod	3'-37/16"	none/none	N/A	N/A	20.540Lbs	50ksi	A=1'-4 15/16"; $\mathrm{B}=1{ }^{\prime}-7$ 3/8";R=1 1/16"
V3	2	R3/4	Rod/Rod	3'-3 1/2"	none/none	N/A	N/A	9.875Lbs	50ksi	$A=1{ }^{\prime}-415 / 16{ }^{\prime \prime} ; B=1^{\prime}-77 / 16{ }^{\prime \prime} ; R=15 / 16{ }^{\prime \prime}$
BEARING										
LB	2	L2x2x5/16	Angles	$6^{\prime \prime}$	N/A	N/A	N/A	3.920Lbs	50ksi	Left seat bearing
RB	2	L2x2x5/16	Angles	$6^{\prime \prime}$	N/A	N/A	N/A	3.920Lbs	50ksi	Right seat bearing
TOTAL	22							182.17 Lbs		
ADDITIONAL INFO.										
Surface area		43.35 sf								
Primer	$1 \mathrm{gal}(\mathrm{s})$									Std. Red Oxide Primer
Design Weight		6.261Lbs/tt.								Not seat bering included
Real Weight		8.280Lbs/tt.								With seat bering
Real Weight		7.924Lbs/tt.								Not seat bering included
SJl Weight		$6.400 \mathrm{Lbs} / \mathrm{ft}$.								Not seat bering included

Project: Demo

Job Number: T001

R1/2 \times Total Lenght of Rod --> Cut=3'-3 3/8"(2,2)
V1

Project: Demo

Job Number: T001

Int. Diameter=1 1/16"
Weld all.=19.181 kips
2Total weld Lenght. $=10 \quad 5 / 16$ " Weld Size (right) $=1 / 8^{\prime \prime}$ Weld Lenght (right) $=53 / 16^{\prime \prime}$

Weld Size (left)= $1 / 8$ " Weld Lenght (left) $=53 / 16$ "

Eccentricity

Tang $=0.53 ; x=0.75 ; y=1.41$

R5/8 x Total Lenght of Rod --> Cut=3'-3 7/16"(2,2)
V2

Project: Demo

Job Number: T001

Weld Size (left)= $1 / 8$ " Weld Lenght (left) $=53 / 16$ "

Eccentricity

Tang $=0.53 ; x=0.75 ; y=1.41$

Weld Size=1/8
Design Lenght=1'-7 15/16'
Weld all. $=5.877 \mathrm{kips}$ Weld Lenght. $=3$ 3/16"

B.E = Both end Member Name	Mem	I-J	Designation[Reinf.]		Lenght	Weld Information
Top chord left first end panel (Lep1)	1	1-2	L1 1/2x1 1/2x1/8[NA]	$\urcorner\ulcorner$	1'-4"	N/A
Top chord left second end panel (Lep2)	2	2-3	L1 1/2x1 1/2x1/8[NA]	าг	2'-0"	N/A
Top chord interior panel	3	3-4	L1 1/2x1 1/2x1/8[NA]	าг	1'-8"	N/A
Top chord interior panel	4	4-5	L1 1/2x1 1/2x1/8[NA]	าг	1'-8"	N/A
Top chord interior panel	5	5-6	L1 1/2x1 1/2x1/8[NA]	าг	1'-8"	N/A
Top chord interior panel	6	6-7	L1 1/2x1 1/2x1/8[NA]	าг	1'-8"	N/A
Top chord interior panel	7	7-8	L1 1/2x1 1/2x1/8[NA]	าг	1'-8"	N/A
Top chord interior panel	8	8-9	L1 1/2x1 1/2x1/8[NA]	าг	1'-8"	N/A
Top chord interior panel	9	9-10	L1 1/2x1 1/2x1/8[NA]	$\urcorner\ulcorner$	1'-8"	N/A
Top chord interior panel	10	10-11	L1 1/2x1 1/2x1/8[NA]	าг	1'-8"	N/A
Top chord interior panel	11	11-12	L1 1/2x1 1/2x1/8[NA]	าг	1'-8"	N/A
Top chord Right second end panel (Lep		12-13	L1 1/2x1 1/2x1/8[NA]	าг	2'-0"	N/A
Top chord right first end panel (Lep1)	13	13-14	L1 1/2x1 1/2x1/8[NA]	าг	1'-4"	N/A
Bottom chord left ext.	14	15-16	L1 1/4x1 1/4x1/8[NA]	$\lrcorner\llcorner$	$4{ }^{\prime \prime}$	N/A
Bottom chord interior panel	15	16-17	L1 1/4x1 1/4x1/8[NA]	$\lrcorner\llcorner$	1'-8"	N/A
Bottom chord interior panel	16	17-18	L1 1/4x1 1/4x1/8[NA]	$\lrcorner\llcorner$	1'-8"	N/A
Bottom chord interior panel	17	18-19	L1 1/4x1 1/4x1/8[NA]	$\lrcorner\llcorner$	1'-8"	N/A
Bottom chord interior panel	18	19-20	L1 1/4x1 1/4x1/8[NA]	$\lrcorner\llcorner$	1'-8"	N/A
Bottom chord interior panel	19	20-21	L1 1/4x1 1/4x1/8[NA]	$\lrcorner\llcorner$	1'-8"	N/A
Bottom chord interior panel	20	21-22	L1 1/4x1 1/4x1/8[NA]	$\lrcorner\llcorner$	1'-8"	N/A
Bottom chord interior panel	21	22-23	L1 1/4x1 1/4x1/8[NA]	$\lrcorner\llcorner$	1'-8"	N/A
Bottom chord interior panel	22	23-24	L1 1/4x1 1/4x1/8[NA]	$\lrcorner\llcorner$	1'-8"	N/A
Bottom chord interior panel	23	24-25	L1 1/4x1 1/4x1/8[NA]	$\lrcorner\llcorner$	1'-8"	N/A
Bottom chord interior panel	24	25-26	L1 1/4x1 1/4x1/8[NA]	$\lrcorner\llcorner$	1'-8"	N/A
Bottom chord right ext.	25	26-27	L1 1/4x1 1/4x1/8[NA]	$\lrcorner\llcorner$	$4{ }^{\prime \prime}$	N/A
Left end web member	26	1-16	R7/8[NA]	\bigcirc	2'-10 9/16"	Use: $1 / 8$ " ; 2 inches Both end (total lenght)
Aux. left or SV web member	27	2-16	R1/2[NA]	\bigcirc	1'-10 3/16"	Use: $1 / 8$ " ; 2 inches Both end (total lenght)
Interior First web member	28	16-3	R3/4[NA]	0	$1^{\prime}-7$ 15/16"	Use: $1 / 8{ }^{\prime \prime} ; 2$ inches Both end (total lenght)
Interior web member	29	3-17	R3/4[NA]	\bigcirc	$1^{\prime}-7$ 15/16"	Use: $1 / 8$ " ; 2 inches Both end (total lenght)
Interior web member	30	17-4	R5/8[NA]	0	$1^{\prime}-7$ 15/16"	Use: $1 / 8{ }^{\prime \prime} ; 2$ inches Both end (total lenght)
Interior web member	31	4-18	R5/8[NA]	\bigcirc	$1^{\prime}-7$ 15/16"	Use: $1 / 8$ " ; 2 inches Both end (total lenght)
Interior web member	32	18-5	R5/8[NA]	\bigcirc	$1^{\prime}-7$ 15/16"	Use: $1 / 8$ " ; 2 inches Both end (total lenght)
Interior web member	33	5-19	R5/8[NA]	\bigcirc	$1^{\prime}-7$ 15/16"	Use: $1 / 8{ }^{\prime \prime} ; 2$ inches Both end (total lenght)
Interior web member	34	19-6	R5/8[NA]	\bigcirc	$1^{\prime}-7$ 15/16"	Use: $1 / 8$ " ; 2 inches Both end (total lenght)
Interior web member	35	6-20	R5/8[NA]	\bigcirc	$1^{\prime}-7$ 15/16"	Use: $1 / 8{ }^{\prime \prime} ; 2$ inches Both end (total lenght)
Interior web member	36	20-7	R1/2[NA]	\bigcirc	$1^{\prime}-7$ 15/16"	Use: $1 / 8$ " ; 2 inches Both end (total lenght)
Interior web member	37	7-21	R1/2[NA]	0	$1^{\prime}-7$ 15/16"	Use: $1 / 8{ }^{\prime \prime} ; 2$ inches Both end (total lenght)
Interior web member	38	21-8	R1/2[NA]	\bigcirc	$1^{\prime}-7$ 15/16"	Use: $1 / 8{ }^{\prime \prime} ; 2$ inches Both end (total lenght)
Interior web member	39	8-22	R1/2[NA]	\bigcirc	$1^{\prime}-7$ 15/16"	Use: $1 / 8{ }^{\prime \prime} ; 2$ inches Both end (total lenght)
Interior web member	40	22-9	R5/8[NA]	\bigcirc	$1^{\prime}-7$ 15/16"	Use: $1 / 8{ }^{\prime \prime} ; 2$ inches Both end (total lenght)

B.E = Both end	Mem					Weld Information
	Mem	1-J	Designation[Reinf.]		Lenght	Weld Information
Interior web member	41	9-23	R5/8[NA]	\bigcirc	$1^{\prime}-7$ 15/16"	Use: $1 / 8$ " ; 2 inches Both end (total lenght)
Interior web member	42	23-10	R5/8[NA]	\bigcirc	$1^{\prime}-7$ 15/16"	Use: $1 / 8$ " ; 2 inches Both end (total lenght)
Interior web member	43	10-24	R5/8[NA]	\bigcirc	$1^{\prime}-7$ 15/16"	Use: $1 / 8{ }^{\prime \prime} ; 2$ inches Both end (total lenght)
Interior web member	44	24-11	R5/8[NA]	\bigcirc	$1^{\prime}-7$ 15/16"	Use: $1 / 8$ " ; 2 inches Both end (total lenght)
Interior web member	45	11-25	R5/8[NA]	\bigcirc	$1^{\prime}-7$ 15/16"	Use: $1 / 8$ " $; 2$ inches Both end (total lenght)
Interior web member	46	25-12	R3/4[NA]	\bigcirc	$1^{\prime}-7$ 15/16"	Use: $1 / 8$ " $; 2$ inches Both end (total lenght)
Interior First web member	47	12-26	R3/4[NA]	\bigcirc	$1^{\prime}-7$ 15/16"	Use: $1 / 8$ " $; 2$ inches Both end (total lenght)
Aux. right or SV web member	48	26-13	R1/2[NA]	\bigcirc	$1^{\prime}-103 / 16^{\prime \prime}$	Use: $1 / 8$ " ; 2 inches Both end (total lenght)
Right end web member	49	26-14	R7/8[NA]	\bigcirc	2'-10 9/16"	Use: $1 / 8{ }^{\prime \prime} ; 2$ inches Both end (total lenght)

GENERAL JOIST INFORMATION

INPUT FORM (ASD) Revision SJI 100-2020

Rev. 1 - Approved April 27, 2020

General Data

**** Parallel Chord and rod web members ****
Designation $=18 \mathrm{~K} 3 \mathrm{SP}$
Depth = 18 inches; de = Effective Depth 17.220 inches
Clear Depth $=15.250$ inches
Span = $22^{\prime}-0^{\prime \prime}$
Span design $=22.000-0.333=21.667 \mathrm{ft} .=21^{\prime}-8{ }^{\prime \prime}=\mathrm{L}=260.00 \mathrm{in}$
Total Joist Weight $=137.749$ Lbs./joist
Joist Weight $=6.261309 \mathrm{Lbs} . / \mathrm{ft}$. (SJl $6.400 \mathrm{Lbs} / \mathrm{ft}$.)
Assumed Chord Spacing (s) = 1/2"
EXTC Left Lenght end $=0$ "; EXBC Left =6"
EXTC Right Lenght end $=0$ "; EXBC Right $=6^{\prime \prime}$
Camber = 1/4"
Seat Type=Outside Seat
Left Seat Angle $=$ L2x2x5/16 x 6"; Hight = $21 / 2^{\prime \prime}$
Right Seat Angle $=\mathrm{L} 2 \times 2 \times 5 / 16 \times 6$ "; Hight $=21 / 2^{\prime \prime}$
Check Span Depth Ratio (SJI Spec 5.2)
SJI - Spec 5.2
Span*12/d = 22.00*12.0/18=14.667 ft.
Ratio $=14.67 / 24=0.61$
(Check Ratio) 0.61 <= 1.0 <<--- OK

Seat Extender

Left seat not extender to end panel
Right seat not extender to end panel

LOAD (SJI) (I=Interpolation)

Uniform Total SJI (TL) = (I=382.000 \#/ft) 382.000 \#/ft full lenght
Uniform Live (LL) $=(\mathrm{I}=316.000$ \#/ft) 316.000 \#/ft full lenght
Uniform Dead (DL) $=(\mathrm{l}=66.000$ \#/ft) 66.000 \#/ft full lenght

Not Additional load present

UPLIFT ACTIVE - PATTERM \#2 (THREE LOAD)
250.000 Lbs/ft From 0 to 6'-0"
175.000 Lbs/ft From 6'-0" to 15'-8" (9'-8")
250.000 Lbs/ft From 15'-8" to 21'-8" (6'-0")

Combination [SW=Self Weight]

COMB1 = 1.00xDL+1.00xLL + [SW F=1.00]
COMB2 $=$ Not Active or Null this Combination
COMB3 $=1.00 \times L L+[$ SW F=1.00]
COMB4 $=0.60 x D L+1.00 x U P+[S W$ F=0.60]

(R)Reaction

Reation (Comb. \#1): Left = 4.207 Kips; Right $=4.207$ Kips
Reation (Comb. \#2): Left $=0.000$ Kips; Right $=0.000$ Kips
Reation (Comb. \#3): Left = 3.492 Kips; Right $=3.492$ Kips
Reation (Comb. \#4): Left $=-1.894$ Kips; Right $=-1.894$ Kips
Maximun Actual Deflection (Check in Red)
$1.00 x D L+1.00 x L L=-0.772$ in. (Member \#7)
$1.00 \times D L+1.00 \times L L=0.000$ in.(Member \#25)
$1.00 x L L=-0.641$ in.(Member \#7)
$0.60 x D L+1.00 x U P=0.317$ in.(Member \#7)

Maximun Allowed Deflection (Live Load)

Floors

Floors $=1 / 360$ of span
$=($ Span 12.0$) / 360$
$=(22.000 * 12.0) / 360=0.733 \mathrm{in}$.
Roof where plaster ceiling is attached or suspended(Rc)
$R c=1 / 360$ of span
$=($ Span 12.0$) / 360$
$=(22.000 * 12.0) / 360=0.733 \mathrm{in}$.
Roof for all other cases(Ro)
$R o=1 / 240$ of span
$=\left(\right.$ Span $\left.{ }^{*} 12.0\right) / 240$
$=\left(22.000^{*} 12.0\right) / 240=1.100 \mathrm{in}$.
Deflection Verify
Floor: $|0.000|<0.733$ OK
Roof: $\mid 0.000$ < 1.100 OK
L / 1 Live Defl.(This joist)

Maximun Axial Force

Max. Compr (top chord) force $=15.790$ Kips in Member \#7; Comb1
Max. Tension (top chord) force $=-6.361$ Kips in Member \#7; Comb4
Max. Compr (Bottom chord) force $=6.363$ Kips in Member \#20; Comb4
Max. Tension (Bottom chord) force $=-15.790$ Kips in Member \#20; Comb1
Calculate an equivalent uniform load (W) based on the maximum moment(m) or shear(v).
$\mathrm{Wm}=\left(8^{*} \mathrm{Jm}\right) / \mathrm{L}$ ^2
$=8^{*}(22.658) /\left(\left(21.667^{\wedge} 2\right)\right)=386.129 \mathrm{plf}$
$W v=\left(2^{*} R\right) / L$
$=2^{*}(4.207) /(21.667)=388.357$ plf
Use: $\mathrm{W}=388.357$ \#/ft. $=0.388 \mathrm{kft}$.(Joist Weight Included)

$$
\mathrm{W}=382.000 \text { \#/ft. = } 0.382 \mathrm{k} / \mathrm{ft} \text {.(Not Joist Weight Included) }
$$

Calculate Moment

Joist moment (Jm) = max Axia force * effective depth=

$$
=15.790 * 17.220=271.900 \mathrm{k}-\mathrm{in}=22.658 \mathrm{k}-\mathrm{ft}
$$

Joist moment(SJI Manual) $=\left(w^{*}\right.$ L^2 $\left.^{\wedge}\right) / 8=$

$$
=\left(0.388^{*}\left(22.000^{\wedge} 2\right)\right) / 8.0=281.935 \mathrm{k}-\mathrm{in}=23.495 \mathrm{k}-\mathrm{ft}
$$

Calculate Inertia Moment (Joist)

Required Moment of Inertia $=\left(1.15^{*} 5^{*} 360^{*} W L L^{*}\left(L^{*} 12\right)^{\wedge} 3\right) /\left(384^{*} \mathrm{E}\right)$ in^4

$$
=\left(1.15^{*} 5^{*} 360^{*}(0.316 / 12)^{*}\left(21.67^{*} 12\right)^{\wedge} 3\right) /\left(384^{*} 29000\right)=86.03 \text { in^4 }
$$

Moment Inertia of Joist $=86.0334$ in^4
Use Top \& Bottom chord to calculate inertia moment
Top Chord = L1 $1 / 2 \times 11 / 2 \times 1 / 8 ; \mathrm{A} 1=0.718 ; \mathrm{y} 1=0.421 ; \mathrm{Ix} 1=0.156$
Bottom Chord = L1 1/4×1 1/4×1/8; A2=0.594; y2=0.359; $1 \times 2=0.088$
Total Area(TA) $=\mathrm{A} 1+\mathrm{A} 2=0.718+0.594=1.312$
Center Gravity $(\mathrm{Cg})=\left(\left(y 1^{*} \mathrm{~A} 1\right)+\left(\mathrm{y} 2^{*} \mathrm{~A} 1\right)\right) /$ At
$=\left(\left(0.359^{*} 0.718\right)+(17.579 * 0.594)\right) / 1.312=8.155$ in from bottom
$\mathrm{Y} 1=9.424 ; \mathrm{Y} 2=7.796($ from bottom $)$
ljoist $=1 x t+1 x b+\left[\left(A t^{*} A b^{*} \mathrm{de}^{\wedge} 2 /(T A)\right]\right.$
ljoist $=0.16+0.09+\left[\left(0.72^{*} 0.59^{*} 17.22^{\wedge} 2\right) /(1.31)\right]=96.64$ in $^{\wedge} 4$
CHECK Moment Of Inertia (Required vs This Joist)
86.03 < 96.64 OK

Modulus Section Bottom (Sb) \& Modulus Section Top (St)
$\mathrm{Sx}=\mathrm{Sb}=\mathrm{Ix} / \mathrm{Y} 2 ; \mathrm{St}=\mathrm{Ix} / \mathrm{Y} 1$
$\mathrm{Sx}=\mathrm{Sb}=96.637 / 7.796=12.395 \mathrm{in}^{\wedge} 3$
St $=96.637 / 9.424=10.255$ in^3
Calculation of Radius of Gyration (r)
$\mathrm{r}=$ Sqr(Ix/Total Area)
$r=\operatorname{Sqr}(96.637 / 1.312)=8.582$ in

AREA OF SURFACE

Area $=43.346$ sq.ft. one Joist
PRIMER
Primer = Std. Red Oxide Primer; Gal. req'd $=43.346 / 200.000=0.216732$ gals.
Gal. req'd = 1 gal.

BRIDGING NOTES

Use normal bridging
Max. spaces of Bridging in top: 8.167 Ft. = 8'-2"
Max. spaces of Bridging in Bottom: 5.667 Ft. $=5^{\prime}-8{ }^{\prime \prime}$

DESIGN MEMBER

INPUT FORM (ASD) Revision SJI 100-2020
Member Number = 1
Serial $=\mathrm{K}$
Member name = Top chord left first end panel (Lep1)
Type = 2Angles(\#2)(1)
Section = ᄀ г
Designation = L1 1/2x1 1/2x1/8 (LLV); A = 0.718^2; Fy=50 ksi
Reinforcement = NA;
Span design = 260.00 in
Lenght Member $=1^{\prime}-4 "=1.333 \mathrm{ft}$. $=16.00 \mathrm{in}$.
End Panel Lenghtg (Lip) = 16 in
Braced Top Chord (Metal Panel) Ly $=36$ in
Tension \& Compression Factor Design $=1.000$
Max. Code Check Ratio $=1.00$
Ω (Omega) $=1.67=1 / 1.67=0.6$; Spec. Section 4.2.3 Eq. 4.2
Omega Welding $=2.00$ Ref. SJI Spec 4.2.3.4
Min. Thicknees Material $=1 / 8^{\prime \prime}=0.125 \mathrm{in}$.
Weld Size(tw) $=1 / 8^{\prime \prime}=0.125 \mathrm{in} .=2.000$
EFFECTIVE SLENDERNESS RATIOS TABLE 4.3-1
Maximun Slenderness Ratio (all = allowable)
Slenderness Ratio not excced 120

Data Member

Yield Stress: Fy=50 ksi
Modulus of Elasticity: E=29000 ksi
Area $=0.718$ in $\wedge 2 ; \mathrm{k}=0.318$ inches
Inertia $\mathrm{x}=0.156 \mathrm{in}^{\wedge} 4, \mathrm{ly}=0.479 \mathrm{in}^{\wedge} 4$
$r x=0.47 \mathrm{in} ; r y=0.82 \mathrm{in} ; \mathrm{y}=0.421 \mathrm{in}$
$\mathrm{Sx}=0.145 \mathrm{in}^{\wedge} 3$
$r z=0.296 \mathrm{in} ;$ Qs $=0.961$
Spacing between chord angles $=0.500$ in $=1 / 2^{\prime \prime}$
Combination; [SW=Self Weight; F=Factor]
COMB1 $=1.00 x D L+1.00 x L L+[S W$ F=1.00]
COMB2 $=$ Not Active or Null this Combination
COMB3 $=1.00 x L L+[S W$ F=1.00]
COMB4 $=0.60 x D L+1.00 x \mathrm{UP}+[S W$ F=0.60]

Summary Combination Maximun Results

COMB	T. FORCE	C. FORCE	SHEAR	MOM(Mi)	MOM(Me)
	Kips	Kips	Kips	K-in	K-in
COMB1	0.000	6.879	0.129	0.528	1.141
COMB2	0.000	0.000	0.000	0.528	0.000
COMB3	0.000	5.710	0.107	0.528	1.141
COMB4	3.070	0.000	0.075	0.528	1.141

Max. Local Shear $(\mathrm{V})=0.128767$ Kips; Location in COMB1
Max. Moment $(\mathrm{Me})=0.095092$ K-ft; Location in COMB1
Max. Moment (Mi) $=0.044000$ K-ft; Location in COMB1
Max. Tension = 3.070 Kips; Location in COMB4
Max. Compresion $=6.879$ Kips; Location in COMB1
Original COMPRESION = YES (Use for internal information only)

Location of Reaction of Force

Max. Reation (Comb. \#4)= -1.894 Kips-Use in web member w/Tension
Max. Reation (Comb. \#1) $=4.207$ Kips-Use in web member w/Compr.

Slenderness Ratio

k For Calculation Fcr per Table 4.3-1
(Comp.) Kx=0.00; Ky=0.00; Kz=1.00

Max. Axial Force Top \& Bottom Chord Local

Max. Compr (top chord) force $=15.790$ Kips in Member \#7; Comb1 Max. Tension (top chord) force = 6.361 Kips in Member \#7; Comb4 Max. Compr (Bottom chord) force $=6.363$ Kips in Member \#20; Comb4
Max. Tension (Bottom chord) force $=15.790$ Kips in Member \#20; Comb1

CHECK SLENDERNESS RATIOS

Assume there are no fillers at the midpanel of top chorrd center panel.
S.R. $x=\left(L x^{*} 12\right) / r x=\left(1.333^{*} 12\right) / 0.466=34.326$
S.R. $y=\left(L y^{*} 12\right) / r y=\left(3.000^{*} 12\right) / 0.817=44.063$
S.R. $z=\left(L z^{*} 12\right) / r z=\left(1.333^{*} 12\right) / 0.296=54.054$

SLRtc $=$ Control $=54.054$
Comp. Ratio $=$ Control $/ 120=54.1 / 120=0.450$
Comp. Status: $0.45<1.00 \ll--$ OK
Tens. Ratio $=$ Control $/ 240=54.05 / 240=0.23$
Tens. Status: $0.23<1.00 \ll-$ OK
CHECK LATERAL STABILITY DURING ERECTION
Eq 5.5-2a; Eq 5.5-2b (Lenght bridging=Lbry=8.17)
L=22.00; dj=18.00; ry=0.817
Lbridging1 $\{$ EQ104.5-1a $=112.723 ;$ Lbridging2\{EQ104.5-2 $\}=138.893$
Lbrdg_gov = $112.72 \mathrm{in} ;$ Lbrdg_spcg $=98.00$ in
Control Ratio = (Lbrdg_spacg/Lbrdg_gov)=98.00/112.72=0.87
Status: 0.87 < 1.00 <<-- OK
CHECK COMPRESSION (4.2-4)
Shim, fillers or ties: NOT
S.R. $z=\left(k z^{*} L^{*} 12\right) / r z=\left(1.00^{*} 1.33^{*} 12\right) / 0.30=54.05$

SLRgov=54.05
Fy=50.00 ksi;
Area=0.72 in^2;Comp=6.88 kips; fa=Comp/Area=9.58 ksi
Fcr=39.14 ksi; Fa=0.6Fcr= 23.49 ksi
IRc=fa/Fa=9.581/23.485=0.410
Comp. Status: 0.41 <= 1.00 <<-- OK

CHECK TENSION (Eq. 4.2-2)

$\mathrm{ft}=$ Tens \times factor/Area $=(3.070 \times 1.000) / 0.718=4.276 \mathrm{ksi}$
$\mathrm{Ft}=0.6(\mathrm{Fy})=0.6 * 50.000=30.000 \mathrm{ksi}$
Ratio $=\mathrm{ft} / \mathrm{Ft}=4.28 / 30.00=0.14$
Status: 0.14 < 1.00 <<-- OK

CHECK COMBINED AXIAL AND BENDING STRESSES

End Panel

Mpp=1.141 in-K; Mpnl=0.528 in-K; btc=1.50 in.; Ytc=0.42 in. Ixtc=0.16 in^4
fbu_pp=7.893;Cm_ep=0.988; fa=fau=fc=9.58; Atc=0.72 in^2
$\mathrm{Cm}=1-0.5^{*} \mathrm{fa} / \mathrm{F}^{\prime} \mathrm{e}$
Check Top Chord Center Panel for Combined Axial and Bending ASD
SJI Eqs 4.4-9 \& 4.4-10
Kx=1.00
Fex=242.90 ksi; Fe_tc=97.96 ksi
fa/(Fa_rc) $=0.408$; Cm=1-0.5(fau/Fex) $=0.989$
IRtc_pnl=0.467
Status: $0.467<0.9 \ll--$ OK
AT THE PANEL POINT (SJI Eq. 4.4)
IRtc_pp=0.582
Status: 0.582 < 0.9 <<-- OK

CHECK SHEAR CAPACITY OF CHORD (Ref. SJI Spec. 4.4)

(Panel Point=Node=Joint).
Angle $\mathrm{b}=1.50$ in, Angle $\mathrm{t}=0.13$ in
OmegaW $=1.500 ; \mathrm{fn}=30.000 ; \mathrm{fn} \times$ OmegaW=45.000,Force(P)=5.847, $\mathrm{b}=1.500 \mathrm{in} ; \mathrm{t}=0.125 \mathrm{in} ; \mathrm{tt}=\mathrm{P} / \mathrm{A}=8.144$
Evaluation Node \#1; Shear(V) $=3.949 ; f v=V /\left(b t^{*} 2^{*} t\right)=10.530 ; f v m o d=11.289$
fvmod=(1/2)*(ft^2+4fv^2)^1/2=11.289 <= fn/OmegaW OK
Evaluation Node \#2; Shear(V) $=0.617 ; \mathfrak{f v =}=\mathrm{V} /(\mathrm{bt} * 2)=1.646 ;$ fvmod=4.392
fvmod $=(1 / 2)^{\star}\left(f t^{\wedge} 2+4 f v^{\wedge} 2\right)^{\wedge 1} / 2=4.392<=f n / O m e g a W$ OK

DESIGN MEMBER

INPUT FORM (ASD) Revision SJI 100-2020

Member Number = 2
Serial $=\mathrm{K}$
Member name = Top chord left second end panel (Lep2)
Type = 2Angles(\#2)(1)
Section = ㄱ г
Designation = L1 1/2x1 1/2x1/8 (LLV); A = 0.718^2; Fy=50 ksi
Reinforcement = NA;
Span design = 260.00 in
Lenght Member $=2^{\prime}-0$ " $=2.000 \mathrm{ft}$ = 24.00 in .
End Panel Lenghtg (Lip) $=24$ in
Braced Top Chord (Metal Panel) Ly $=36$ in
Tension \& Compression Factor Design $=1.000$
Max. Code Check Ratio $=1.00$
Ω (Omega) $=1.67=1 / 1.67=0.6$; Spec. Section 4.2.3 Eq. 4.2
Omega Welding $=2.00$ Ref. SJI Spec 4.2.3.4
Min. Thicknees Material $=1 / 8^{\prime \prime}=0.125 \mathrm{in}$.
Weld Size(tw) $=1 / 8^{\prime \prime}=0.125 \mathrm{in} .=2.000$
EFFECTIVE SLENDERNESS RATIOS TABLE 4.3-1
Maximun Slenderness Ratio (all = allowable)
Slenderness Ratio not excced 120

Data Member

Yield Stress: Fy=50 ksi
Modulus of Elasticity: E=29000 ksi
Area $=0.718$ in $\wedge 2 ; \mathrm{k}=0.318$ inches
Inertia $\mathrm{x}=0.156 \mathrm{in}^{\wedge} 4, \mathrm{ly}=0.479 \mathrm{in}^{\wedge} 4$
$r x=0.47 \mathrm{in} ; r y=0.82 \mathrm{in} ; \mathrm{y}=0.421 \mathrm{in}$
$\mathrm{Sx}=0.145 \mathrm{in}^{\wedge} 3$
$r z=0.296 \mathrm{in} ;$ Qs $=0.961$
Spacing between chord angles $=0.500$ in $=1 / 2^{\prime \prime}$
Combination; [SW=Self Weight; F=Factor]
COMB1 $=1.00 x D L+1.00 x L L+[S W$ F=1.00]
COMB2 $=$ Not Active or Null this Combination
COMB3 $=1.00 x L L+[S W$ F=1.00]
COMB4 $=0.60 x D L+1.00 x \mathrm{UP}+[S W$ F=0.60]

Summary Combination Maximun Results

COMB	T. FORCE	C. FORCE	SHEAR	MOM(Mi)	MOM(Me)
Kips	Kips	Kips	K-in	K-in	
COMB1	0.000	6.399	0.244	1.242	1.681
COMB2	0.000	0.000	0.000	1.242	0.000
COMB3	0.000	5.312	0.202	0.000	0.000
COMB4	2.802	0.000	0.128	0.000	0.000

Max. Local Shear $(\mathrm{V})=0.243579$ Kips; Location in COMB1
Max. Moment $(\mathrm{Me})=0.140047$ K-ft; Location in COMB1
Max. Moment (Mi) $=0.103532$ K-ft; Location in COMB1
Max. Tension = 2.802 Kips; Location in COMB4
Max. Compresion $=6.399$ Kips; Location in COMB1
Original COMPRESION = YES (Use for internal information only)

Location of Reaction of Force

Max. Reation (Comb. \#4)= -1.894 Kips-Use in web member w/Tension
Max. Reation (Comb. \#1) $=4.207$ Kips-Use in web member w/Compr.

Slenderness Ratio

k For Calculation Fcr per Table 4.3-1
(Comp.) Kx=0.00; Ky=0.00; Kz=1.00

Max. Axial Force Top \& Bottom Chord Local

Max. Compr (top chord) force $=15.790$ Kips in Member \#7; Comb1 Max. Tension (top chord) force $=6.361$ Kips in Member \#7; Comb4 Max. Compr (Bottom chord) force $=6.363$ Kips in Member \#20; Comb4
Max. Tension (Bottom chord) force $=15.790$ Kips in Member \#20; Comb1

CHECK SLENDERNESS RATIOS

Assume there are no fillers at the midpanel of top chorrd center panel.
S.R. $x=\left(L x^{*} 12\right) / r x=\left(2.000^{*} 12\right) / 0.466=51.489$
S.R. $y=\left(L y^{*} 12\right) / r y=\left(3.000^{*} 12\right) / 0.817=44.063$
S.R. $z=\left(L z^{*} 12\right) / r z=\left(2.000^{*} 12\right) / 0.296=81.081$

SLRtc $=$ Control $=81.081$
Comp. Ratio $=$ Control $/ 120=81.1 / 120=0.676$
Comp. Status: 0.68 < 1.00 <<-- OK
Tens. Ratio $=$ Control $/ 240=81.08 / 240=0.34$
Tens. Status: $0.34<1.00 \ll-$ OK
CHECK LATERAL STABILITY DURING ERECTION
Eq 5.5-2a; Eq 5.5-2b (Lenght bridging=Lbry=8.17)
L=22.00; dj=18.00; ry=0.817
Lbridging1 $\{$ EQ104.5-1a $=112.723 ;$ Lbridging2\{EQ104.5-2 $\}=138.893$
Lbrdg_gov = $112.72 \mathrm{in} ;$ Lbrdg_spcg $=98.00$ in
Control Ratio = (Lbrdg_spacg/Lbrdg_gov)=98.00/112.72=0.87
Status: 0.87 < 1.00 <<-- OK

CHECK COMPRESSION (4.2-4)

Shim, fillers or ties: NOT
S.R. $z=\left(k z^{*} L^{*} 12\right) / r z=\left(1.00^{*} 2.00^{*} 12\right) / 0.30=81.08$

SLRgov=81.08
Fy=50.00 ksi;
Area=0.72 in^2;Comp=6.40 kips; fa=Comp/Area=8.91 ksi
Fcr=30.28 ksi; Fa=0.6Fcr= 18.17 ksi
IRc=fa/Fa=8.912/18.168=0.490
Comp. Status: 0.49 <= 1.00 <<-- OK

CHECK TENSION (Eq. 4.2-2)

$\mathrm{ft}=$ Tens \times factor/Area $=(2.802 \times 1.000) / 0.718=3.903 \mathrm{ksi}$
$\mathrm{Ft}=0.6(\mathrm{Fy})=0.6^{*} 50.000=30.000 \mathrm{ksi}$
Ratio $=\mathrm{ft} / \mathrm{Ft}=3.90 / 30.00=0.13$
Status: 0.13 < 1.00 <<-- OK

CHECK COMBINED AXIAL AND BENDING STRESSES

End Panel

Mpp=1.681 in-K; Mpnl=1.242 in-K; btc=1.50 in.; Ytc=0.42 in. Ixtc=0.16 in^4
fbu_pp=11.624;Cm_ep=0.974; fa=fau=fc=8.91; Atc=0.72 in^2
$\mathrm{Cm}=1-0.5 * \mathrm{fa} / \mathrm{F}$ 'e
Check Top Chord Center Panel for Combined Axial and Bending ASD
SJI Eqs 4.4-9 \& 4.4-10
Kx=1.00
Fex=107.96 ksi; Fe_tc=43.54 ksi
$\mathrm{fa} /($ Fa_rc) $=0.491 ; \mathrm{Cm}=1-0.5$ (fau/Fex) $=0.977$
|Rtc_pnl=0.580
Status: $0.580<0.9 \ll--$ OK
AT THE PANEL POINT (SJI Eq. 4.4)
IRtc_pp=0.685
Status: 0.685 < 0.9 <<-- OK

CHECK SHEAR CAPACITY OF CHORD (Ref. SJI Spec. 4.4)

(Panel Point=Node=Joint).
Angle $\mathrm{b}=1.50$ in, Angle $\mathrm{t}=0.13$ in
OmegaW $=1.500 ; \mathrm{fn}=30.000 ; \mathrm{fn} \times$ OmegaW $=45.000$,Force $(\mathrm{P})=5.439$, $\mathrm{b}=1.500 \mathrm{in} ; \mathrm{t}=0.125 \mathrm{in} ; \mathrm{ft}=\mathrm{P} / \mathrm{A}=7.575$
Evaluation Node \#2; Shear $(\mathrm{V})=0.617 ; \mathrm{fv}=\mathrm{V} /\left(\mathrm{bt}{ }^{*} 2^{*} \mathrm{t}\right)=1.646 ; \mathrm{fvmod}=4.130$
fvmod=(1/2)*(ft^2+4fv^2)^1/2=4.130 <= fn/OmegaW OK
Evaluation Node \#3; Shear(V) = 3.343; fv=V/(bt*2)=8.914; fvmod=9.685
fvmod=(1/2)*(ft^2+4fv^2)^1/2=9.685 <=fn/OmegaW OK

DESIGN MEMBER

INPUT FORM (ASD) Revision SJI 100-2020
Member Number = 3
Serial $=\mathrm{K}$
Member name = Top chord interior panel
Type = 2Angles(\#2)(1)
Section = ㄱ г
Designation = L1 1/2x1 1/2x1/8 (LLV); A = 0.718^2; Fy=50 ksi
Reinforcement = NA;
Span design = 260.00 in
Lenght Member $=1^{\prime}-8$ " $=1.667 \mathrm{ft}$. $=20.00 \mathrm{in}$.
Interior Panel Lenghtg (Lip) $=20$ in
Braced Top Chord (Metal Panel) Ly $=36$ in
Tension \& Compression Factor Design $=1.000$
Max. Code Check Ratio $=1.00$
Ω (Omega) $=1.67=1 / 1.67=0.6$; Spec. Section 4.2.3 Eq. 4.2
Omega Welding $=2.00$ Ref. SJI Spec 4.2.3.4
Min. Thicknees Material $=1 / 8^{\prime \prime}=0.125 \mathrm{in}$.
Weld Size(tw) $=1 / 8^{\prime \prime}=0.125 \mathrm{in} .=2.000$
EFFECTIVE SLENDERNESS RATIOS TABLE 4.3-1
Maximun Slenderness Ratio (all = allowable)
Slenderness Ratio not excced 90

Data Member

Yield Stress: Fy=50 ksi
Modulus of Elasticity: E=29000 ksi
Area $=0.718$ in $\wedge 2 ; \mathrm{k}=0.318$ inches
Inertia $\mathrm{x}=0.156 \mathrm{in}^{\wedge} 4, \mathrm{ly}=0.479 \mathrm{in}^{\wedge} 4$
$r x=0.47 \mathrm{in} ; r y=0.82 \mathrm{in} ; \mathrm{y}=0.421 \mathrm{in}$
$\mathrm{Sx}=0.145 \mathrm{in}^{\wedge} 3$
$r z=0.296 \mathrm{in} ;$ Qs $=0.961$
Spacing between chord angles $=0.500$ in $=1 / 2^{\prime \prime}$
Combination; [SW=Self Weight; F=Factor]
COMB1 $=1.00 x D L+1.00 x L L+[S W$ F=1.00]
COMB2 $=$ Not Active or Null this Combination
COMB3 $=1.00 x L L+[S W$ F=1.00]
COMB4 $=0.60 x D L+1.00 x \mathrm{UP}+[S W$ F=0.60]

Summary Combination Maximun Results

COMB	T. FORCE	C. FORCE	SHEAR	MOM(Mi)	MOM(Me)
Kips	Kips	Kips	K-in	K-in	
COMB1	0.000	9.813	0.207	0.531	1.061
COMB2	0.000	0.000	0.000	0.531	0.000
COMB3	0.000	8.146	0.172	0.531	1.061
COMB4	4.219	0.000	0.109	0.531	1.061

Max. Local Shear $(\mathrm{V})=0.207352$ Kips; Location in COMB1
Max. Moment $(\mathrm{Me})=0.088426$ K-ft; Location in COMB1
Max. Moment (Mi) $=0.044213$ K-ft; Location in COMB1
Max. Tension = 4.219 Kips; Location in COMB4
Max. Compresion = 9.813 Kips; Location in COMB1
Original COMPRESION = YES (Use for internal information only)

Location of Reaction of Force

Max. Reation (Comb. \#4)= -1.894 Kips-Use in web member w/Tension
Max. Reation (Comb. \#1) $=4.207$ Kips-Use in web member w/Compr.

Slenderness Ratio

k For Calculation Fcr per Table 4.3-1
(Comp.) Kx=0.00; Ky=0.00; Kz=0.75

Max. Axial Force Top \& Bottom Chord Local

Max. Compr (top chord) force $=15.790$ Kips in Member \#7; Comb1 Max. Tension (top chord) force $=6.361$ Kips in Member \#7; Comb4 Max. Compr (Bottom chord) force $=6.363$ Kips in Member \#20; Comb4
Max. Tension (Bottom chord) force $=15.790$ Kips in Member \#20; Comb1

CHECK SLENDERNESS RATIOS

Assume there are no fillers at the midpanel of top chorrd center panel.
S.R. $x=\left(L x^{*} 12\right) / r x=\left(1.67^{*} 12\right) / 0.47=42.91$
S.R. $y=\left(L y^{*} 12\right) / r y=\left(3.00^{*} 12\right) / 0.82=44.06$
S.R. $z=\left(L z^{*} 12\right) / r z=\left(1.67^{*} 12\right) / 0.30=67.57$

SLRtc $=$ Control $=67.568$
Comp. Ratio $=$ Control $/ 90=67.6 / 90=0.751$
Comp. Status: 0.75 < 1.00 <<-- OK
Tens. Ratio $=$ Control $/ 240=67.57 / 240=0.28$
Tens. Status: $0.28<1.00 \ll-$ OK
CHECK LATERAL STABILITY DURING ERECTION
Eq 5.5-2a; Eq 5.5-2b (Lenght bridging=Lbry=8.17)
L=22.00; dj=18.00; ry=0.817
Lbridging1 $\{$ EQ104.5-1a $=112.723 ;$ Lbridging2\{EQ104.5-2 $\}=138.893$
Lbrdg_gov = $112.72 \mathrm{in} ;$ Lbrdg_spcg $=98.00$ in
Control Ratio = (Lbrdg_spacg/Lbrdg_gov)=98.00/112.72=0.87
Status: 0.87 < 1.00 <<-- OK
CHECK COMPRESSION (4.2-4)
Shim, fillers or ties: NOT
S.R. $z=\left(k z^{*}{ }^{*} 12\right) / r z=\left(0.75^{*} 1.67^{*} 12\right) / 0.30=50.68$

SLRgov=50.68
Fy=50.00 ksi;
Area=0.72 in^2;Comp=9.81 kips; fa=Comp/Area=13.67 ksi
Fcr=40.13 ksi; Fa=0.6Fcr= 24.08 ksi
IRc=fa/Fa=13.668/24.077=0.570
Comp. Status: 0.57 <= 1.00 <<-- OK

CHECK TENSION (Eq. 4.2-2)

$\mathrm{ft}=$ Tens \times factor/Area $=(4.219 \times 1.000) / 0.718=5.875 \mathrm{ksi}$
$\mathrm{Ft}=0.6(\mathrm{Fy})=0.6 * 50.000=30.000 \mathrm{ksi}$
Ratio $=\mathrm{ft} / \mathrm{Ft}=5.88 / 30.00=0.20$
Status: $0.20<1.00$ <<-- OK
CHECK COMBINED AXIAL AND BENDING STRESSES
AT THE CENTER PANEL
Mpp=1.061 in-K; Mpnl=0.531 in-K; btc=1.50 in.; Ytc=0.42 in. Ixtc=0.16 in^4
fbu_pp $=7.34 \mathrm{ksi} . ;$ fbu_pnl $=1.43 \mathrm{ksi}$. fa=fau=fc=13.67; Atc=0.72 in^2
$\mathrm{Cm}=1-0.67^{*} \mathrm{fau} /$ Phi*F'e
Check Top Chord Center Panel for Combined Axial and Bending ASD
SJI Eqs 4.4-9 \& 4.4-10
Fex=276.39 ksi; Fe_tc=111.45 ksi
$\mathrm{fa} /($ Fa_rc $)=0.568 ; \mathrm{Cm}=1-0.67(\mathrm{fau} / \mathrm{Fex})=0.967$
|Rtc_pnl=0.59
Status: $0.59<1.0 \ll--$ OK
AT THE PANEL POINT
IRtc_pnl=0.700
Status: $0.70<1.0 \ll--$ OK

CHECK SHEAR CAPACITY OF CHORD (Ref. SJI Spec. 4.4)

(Panel Point=Node=Joint).
Angle $\mathrm{b}=1.50 \mathrm{in}$, Angle $\mathrm{t}=0.13$ in
OmegaW $=1.500 ; \mathrm{fn}=30.000$;fn \times OmegaW $=45.000$,Force $(P)=8.341$, $\mathrm{b}=1.500 \mathrm{in} ; \mathrm{t}=0.125 \mathrm{in} ; \mathrm{ft}=\mathrm{P} / \mathrm{A}=11.617$
Evaluation Node \#3; Shear $(\mathrm{V})=3.343 ; f v=\mathrm{V} /\left(\mathrm{bt}^{\star} 2^{\star t} \mathrm{t}\right)=8.914 ;$ fvmod=10.640
fvmod=(1/2)*(ft^2+4fv^2)^1/2=10.640 <= fn/OmegaW OK
Evaluation Node \#4; Shear(V) $=2.536 ; \mathfrak{f v}=\mathrm{V} /(\mathrm{bt} * 2)=6.764 ;$ fvmod=8.916 fvmod=(1/2)*(ft^2+4fv^2)^1/2=8.916 <= fn/OmegaW OK

DESIGN MEMBER

INPUT FORM (ASD) Revision SJI 100-2020
Member Number = 4
Serial $=\mathrm{K}$
Member name = Top chord interior panel
Type = 2Angles(\#2)(1)
Section = ㄱ г
Designation = L1 1/2x1 1/2x1/8 (LLV); A = 0.718^2; Fy=50 ksi
Reinforcement = NA;
Span design = 260.00 in
Lenght Member $=1^{\prime}-8$ " $=1.667 \mathrm{ft}$. $=20.00 \mathrm{in}$.
Interior Panel Lenghtg (Lip) $=20$ in
Braced Top Chord (Metal Panel) Ly $=36$ in
Tension \& Compression Factor Design $=1.000$
Max. Code Check Ratio $=1.00$
Ω (Omega) $=1.67=1 / 1.67=0.6$; Spec. Section 4.2.3 Eq. 4.2
Omega Welding $=2.00$ Ref. SJI Spec 4.2.3.4
Min. Thicknees Material $=1 / 8^{\prime \prime}=0.125 \mathrm{in}$.
Weld Size(tw) $=1 / 8^{\prime \prime}=0.125 \mathrm{in} .=2.000$
EFFECTIVE SLENDERNESS RATIOS TABLE 4.3-1
Maximun Slenderness Ratio (all = allowable)
Slenderness Ratio not excced 90

Data Member

Yield Stress: Fy=50 ksi
Modulus of Elasticity: E=29000 ksi
Area $=0.718$ in $\wedge 2 ; \mathrm{k}=0.318$ inches
Inertia $\mathrm{x}=0.156 \mathrm{in}^{\wedge} 4, \mathrm{ly}=0.479 \mathrm{in}^{\wedge} 4$
$r x=0.47 \mathrm{in} ; r y=0.82 \mathrm{in} ; \mathrm{y}=0.421 \mathrm{in}$
$\mathrm{Sx}=0.145 \mathrm{in}^{\wedge} 3$
$r z=0.296 \mathrm{in} ;$ Qs $=0.961$
Spacing between chord angles $=0.500$ in $=1 / 2^{\prime \prime}$
Combination; [SW=Self Weight; F=Factor]
COMB1 $=1.00 x D L+1.00 x L L+[S W$ F=1.00]
COMB2 $=$ Not Active or Null this Combination
COMB3 $=1.00 x L L+[S W$ F=1.00]
COMB4 $=0.60 x D L+1.00 x \mathrm{UP}+[S W$ F=0.60]

Summary Combination Maximun Results

COMB	T. FORCE	C. FORCE	SHEAR	MOM(Mi)	MOM(Me)
	Kips	Kips	Kips	K-in	K-in
COMB1	0.000	12.417	0.166	0.531	1.061
COMB2	0.000	0.000	0.000	0.531	0.000
COMB3	0.000	10.307	0.137	0.531	1.061
COMB4	5.205	0.000	0.088	0.531	1.061

Max. Local Shear $(\mathrm{V})=0.165717$ Kips; Location in COMB1
Max. Moment $(\mathrm{Me})=0.088426$ K-ft; Location in COMB1
Max. Moment (Mi) $=0.044213$ K-ft; Location in COMB1
Max. Tension = 5.205 Kips; Location in COMB4
Max. Compresion = 12.417 Kips; Location in COMB1
Original COMPRESION = YES (Use for internal information only)

Location of Reaction of Force

Max. Reation (Comb. \#4)= -1.894 Kips-Use in web member w/Tension
Max. Reation (Comb. \#1) $=4.207$ Kips-Use in web member w/Compr.

Slenderness Ratio

k For Calculation Fcr per Table 4.3-1
(Comp.) Kx=0.00; Ky=0.00; Kz=0.75

Max. Axial Force Top \& Bottom Chord Local

Max. Compr (top chord) force $=15.790$ Kips in Member \#7; Comb1 Max. Tension (top chord) force $=6.361$ Kips in Member \#7; Comb4 Max. Compr (Bottom chord) force $=6.363$ Kips in Member \#20; Comb4
Max. Tension (Bottom chord) force $=15.790$ Kips in Member \#20; Comb1

CHECK SLENDERNESS RATIOS

Assume there are no fillers at the midpanel of top chorrd center panel.
S.R. $x=\left(L x^{*} 12\right) / r x=\left(1.67^{*} 12\right) / 0.47=42.91$
S.R. $y=\left(L y^{*} 12\right) / r y=\left(3.00^{*} 12\right) / 0.82=44.06$
S.R. $z=\left(L z^{*} 12\right) / r z=\left(1.67^{*} 12\right) / 0.30=67.57$

SLRtc $=$ Control $=67.568$
Comp. Ratio $=$ Control $/ 90=67.6 / 90=0.751$
Comp. Status: 0.75 < 1.00 <<-- OK
Tens. Ratio $=$ Control $/ 240=67.57 / 240=0.28$
Tens. Status: $0.28<1.00 \ll-$ OK
CHECK LATERAL STABILITY DURING ERECTION
Eq 5.5-2a; Eq 5.5-2b (Lenght bridging=Lbry=8.17)
L=22.00; dj=18.00; ry=0.817
Lbridging1 $\{$ EQ104.5-1a $=112.723 ;$ Lbridging2\{EQ104.5-2 $\}=138.893$
Lbrdg_gov = $112.72 \mathrm{in} ;$ Lbrdg_spcg $=98.00$ in
Control Ratio = (Lbrdg_spacg/Lbrdg_gov)=98.00/112.72=0.87
Status: 0.87 < 1.00 <<-- OK
CHECK COMPRESSION (4.2-4)
Shim, fillers or ties: NOT
S.R. $z=\left(k z^{*}{ }^{*} 12\right) / r z=\left(0.75^{*} 1.67^{*} 12\right) / 0.30=50.68$

SLRgov=50.68
Fy=50.00 ksi;
Area=0.72 in^2;Comp=12.42 kips; fa=Comp/Area=17.29 ksi
Fcr=40.13 ksi; Fa=0.6Fcr= 24.08 ksi
IRc=fa/Fa=17.293/24.077=0.720
Comp. Status: 0.72 <= $1.00 \ll-$ OK

CHECK TENSION (Eq. 4.2-2)

$\mathrm{ft}=$ Tens \times factor/Area $=(5.205 \times 1.000) / 0.718=7.249 \mathrm{ksi}$
$\mathrm{Ft}=0.6(\mathrm{Fy})=0.6 * 50.000=30.000 \mathrm{ksi}$
Ratio $=\mathrm{ft} / \mathrm{Ft}=7.25 / 30.00=0.24$
Status: 0.24 < 1.00 <<-- OK
CHECK COMBINED AXIAL AND BENDING STRESSES
AT THE CENTER PANEL
Mpp=1.061 in-K; Mpnl=0.531 in-K; btc=1.50 in.; Ytc=0.42 in. Ixtc=0.16 in^4 fbu_pp $=7.34 \mathrm{ksi} . ;$ fbu_pnl $=1.43 \mathrm{ksi}$. fa=fau=fc=17.29; Atc=0.72 in^2 $\mathrm{Cm}=1-0.67^{\star} \mathrm{fau} /$ Phi*F'e
Check Top Chord Center Panel for Combined Axial and Bending ASD SJI Eqs 4.4-9 \& 4.4-10
Fex=276.39 ksi; Fe_tc=111.45 ksi
$\mathrm{fa} /($ Fa_rc $)=0.718 ; \mathrm{Cm}=1-0.67(\mathrm{fau} / \mathrm{Fex})=0.958$
IRtc_pnl=0.75
Status: 0.75 < 1.0 <<-- OK
AT THE PANEL POINT
IRtc_pnl=0.821
Status: 0.82 < 1.0 <<-- OK

CHECK SHEAR CAPACITY OF CHORD (Ref. SJI Spec. 4.4)

(Panel Point=Node=Joint).
Angle $\mathrm{b}=1.50 \mathrm{in}$, Angle $\mathrm{t}=0.13$ in
OmegaW=1.500;fn $=30.000 ; \mathrm{fn} \times$ OmegaW $=45.000$,Force(P) $=10.554$, $\mathrm{b}=1.500 \mathrm{in} ; \mathrm{t}=0.125 \mathrm{in} ; \mathrm{ft}=\mathrm{P} / \mathrm{A}=14.699$
Evaluation Node \#4; Shear (V) = 2.536; fv=V/(bt*2*t)=6.764; fvmod=9.988 fvmod=(1/2)*(ft^2+4fv^2)^1/2=9.988 <= fn/OmegaW OK
Evaluation Node \#5; Shear(V) = 1.943; fv=V/(bt*2)=5.181; fvmod=8.992 fvmod=(1/2)*(ft^2+4fv^2)^1/2=8.992 <= fn/OmegaW OK

DESIGN MEMBER

INPUT FORM (ASD) Revision SJI 100-2020

Member Number = 5
Serial = K
Member name = Top chord interior panel
Type = 2Angles(\#2)(1)
Section = ㄱ г
Designation = L1 1/2x1 1/2x1/8 (LLV); A = 0.718^2; Fy=50 ksi
Reinforcement = NA;
Span design = 260.00 in
Lenght Member $=1^{\prime}-8$ " $=1.667 \mathrm{ft}$. $=20.00 \mathrm{in}$.
Interior Panel Lenghtg (Lip) $=20$ in
Braced Top Chord (Metal Panel) Ly $=36$ in
Tension \& Compression Factor Design $=1.000$
Max. Code Check Ratio $=1.00$
Ω (Omega) $=1.67=1 / 1.67=0.6$; Spec. Section 4.2.3 Eq. 4.2
Omega Welding $=2.00$ Ref. SJI Spec 4.2.3.4
Min. Thicknees Material $=1 / 8^{\prime \prime}=0.125 \mathrm{in}$.
Weld Size(tw) $=1 / 8^{\prime \prime}=0.125 \mathrm{in} .=2.000$
EFFECTIVE SLENDERNESS RATIOS TABLE 4.3-1
Maximun Slenderness Ratio (all = allowable)
Slenderness Ratio not excced 90

Data Member

Yield Stress: Fy=50 ksi
Modulus of Elasticity: E=29000 ksi
Area $=0.718$ in $\wedge 2 ; \mathrm{k}=0.318$ inches
Inertia $\mathrm{x}=0.156 \mathrm{in}^{\wedge} 4, \mathrm{ly}=0.479 \mathrm{in}^{\wedge} 4$
$r x=0.47 \mathrm{in} ; r y=0.82 \mathrm{in} ; \mathrm{y}=0.421 \mathrm{in}$
$\mathrm{Sx}=0.145 \mathrm{in}^{\wedge} 3$
$r z=0.296 \mathrm{in} ;$ Qs $=0.961$
Spacing between chord angles $=0.500$ in $=1 / 2^{\prime \prime}$
Combination; [SW=Self Weight; F=Factor]
COMB1 $=1.00 x D L+1.00 x L L+[S W$ F=1.00]
COMB2 $=$ Not Active or Null this Combination
COMB3 $=1.00 x L L+[S W$ F=1.00]
COMB4 $=0.60 x D L+1.00 x \mathrm{UP}+[S W$ F=0.60]

Summary Combination Maximun Results

COMB	T. FORCE	C. FORCE	SHEAR	MOM(Mi)	MOM(Me)
	Kips	Kips	Kips	K-in	K-in
COMB1	0.000	14.295	0.163	0.531	1.061
COMB2	0.000	0.000	0.000	0.531	0.000
COMB3	0.000	11.866	0.135	0.531	1.061
COMB4	5.855	0.000	0.062	0.531	1.061

Max. Local Shear $(\mathrm{V})=0.163100$ Kips; Location in COMB1
Max. Moment $(\mathrm{Me})=0.088426$ K-ft; Location in COMB1
Max. Moment (Mi) $=0.044213$ K-ft; Location in COMB1
Max. Tension = 5.855 Kips; Location in COMB4
Max. Compresion = 14.295 Kips; Location in COMB1
Original COMPRESION = YES (Use for internal information only)

Location of Reaction of Force

Max. Reation (Comb. \#4)= -1.894 Kips-Use in web member w/Tension
Max. Reation (Comb. \#1) $=4.207$ Kips-Use in web member w/Compr.

Slenderness Ratio

k For Calculation Fcr per Table 4.3-1
(Comp.) Kx=0.00; Ky=0.00; Kz=0.75

Max. Axial Force Top \& Bottom Chord Local

Max. Compr (top chord) force $=15.790$ Kips in Member \#7; Comb1 Max. Tension (top chord) force $=6.361$ Kips in Member \#7; Comb4 Max. Compr (Bottom chord) force $=6.363$ Kips in Member \#20; Comb4
Max. Tension (Bottom chord) force $=15.790$ Kips in Member \#20; Comb1

CHECK SLENDERNESS RATIOS

Assume there are no fillers at the midpanel of top chorrd center panel.
S.R. $x=\left(L x^{*} 12\right) / r x=\left(1.67^{*} 12\right) / 0.47=42.91$
S.R. $y=\left(L y^{*} 12\right) / r y=\left(3.00^{*} 12\right) / 0.82=44.06$
S.R. $z=\left(L z^{*} 12\right) / r z=\left(1.67^{*} 12\right) / 0.30=67.57$

SLRtc $=$ Control $=67.568$
Comp. Ratio $=$ Control $/ 90=67.6 / 90=0.751$
Comp. Status: 0.75 < 1.00 <<-- OK
Tens. Ratio $=$ Control $/ 240=67.57 / 240=0.28$
Tens. Status: $0.28<1.00 \ll-$ OK
CHECK LATERAL STABILITY DURING ERECTION
Eq 5.5-2a; Eq 5.5-2b (Lenght bridging=Lbry=8.17)
L=22.00; dj=18.00; ry=0.817
Lbridging1 $\{$ EQ104.5-1a $=112.723 ;$ Lbridging2\{EQ104.5-2 $\}=138.893$
Lbrdg_gov = $112.72 \mathrm{in} ;$ Lbrdg_spcg $=98.00$ in
Control Ratio = (Lbrdg_spacg/Lbrdg_gov)=98.00/112.72=0.87
Status: 0.87 < 1.00 <<-- OK
CHECK COMPRESSION (4.2-4)
Shim, fillers or ties: NOT
S.R. $z=\left(k z^{*}{ }^{*} 12\right) / r z=\left(0.75^{*} 1.67^{*} 12\right) / 0.30=50.68$

SLRgov=50.68
Fy=50.00 ksi;
Area=0.72 in^2;Comp=14.30 kips; fa=Comp/Area=19.91 ksi
Fcr=40.13 ksi; Fa=0.6Fcr= 24.08 ksi
IRc=fa/Fa=19.910/24.077=0.830
Comp. Status: 0.83 <= $1.00 \ll-$ OK

CHECK TENSION (Eq. 4.2-2)

$\mathrm{ft}=$ Tens \times factor/Area $=(5.855 \times 1.000) / 0.718=8.155 \mathrm{ksi}$
$\mathrm{Ft}=0.6(\mathrm{Fy})=0.6 * 50.000=30.000 \mathrm{ksi}$
Ratio $=\mathrm{ft} / \mathrm{Ft}=8.15 / 30.00=0.27$
Status: 0.27 < 1.00 <<-- OK
CHECK COMBINED AXIAL AND BENDING STRESSES
AT THE CENTER PANEL
Mpp=1.061 in-K; Mpnl=0.531 in-K; btc=1.50 in.; Ytc=0.42 in. Ixtc=0.16 in^4 fbu_pp $=7.34$ ksi.; fbu_pnl $=1.43 \mathrm{ksi}$. fa=fau=fc=19.91; Atc=0.72 in^2 $\mathrm{Cm}=1-0.67^{\star} \mathrm{fau} /$ Phi*F'e
Check Top Chord Center Panel for Combined Axial and Bending ASD SJI Eqs 4.4-9 \& 4.4-10
Fex=276.39 ksi; Fe_tc=111.45 ksi
$\mathrm{fa} /($ Fa_rc $)=0.827 ; \mathrm{Cm}=1-0.67$ (fau/Fex) $=0.952$
|Rtc_pnl=0.85
Status: 0.85 < 1.0 <<-- OK
AT THE PANEL POINT
IRtc_pnl=0.908
Status: $0.91<1.0$ <<-- OK

CHECK SHEAR CAPACITY OF CHORD (Ref. SJI Spec. 4.4)

(Panel Point=Node=Joint).
Angle $\mathrm{b}=1.50$ in, Angle $\mathrm{t}=0.13$ in
OmegaW=1.500;fn $=30.000 ; \mathrm{fn} \times$ OmegaW $=45.000$,Force(P) $=12.151$, $\mathrm{b}=1.500 \mathrm{in} ; \mathrm{t}=0.125 \mathrm{in} ; \mathrm{ft}=\mathrm{P} / \mathrm{A}=16.923$
Evaluation Node \#5; Shear $(\mathrm{V})=1.943 ; \mathrm{fv}=\mathrm{V} /\left(\mathrm{bt}{ }^{*} 2^{\star} \mathrm{t}\right)=5.181 ; \mathrm{fvmod}=9.922$
fvmod=(1/2)*(ft^2+4fv^2)^1/2=9.922 <= fn/OmegaW OK
Evaluation Node \#6; Shear(V) = 1.289; fv=V/(bt*2)=3.437; fvmod=9.133 fvmod=(1/2)*(ft^2+4fv^2)^1/2=9.133 <= fn/OmegaW OK

DESIGN MEMBER

INPUT FORM (ASD) Revision SJI 100-2020

Member Number = 6
Serial = K
Member name = Top chord interior panel
Type = 2Angles(\#2)(1)
Section = ㄱ г
Designation = L1 1/2x1 1/2x1/8 (LLV); A = 0.718^2; Fy=50 ksi
Reinforcement = NA;
Span design = 260.00 in
Lenght Member $=1^{\prime}-8$ " $=1.667 \mathrm{ft}$. $=20.00 \mathrm{in}$.
Interior Panel Lenghtg (Lip) $=20$ in
Braced Top Chord (Metal Panel) Ly $=36$ in
Tension \& Compression Factor Design $=1.000$
Max. Code Check Ratio $=1.00$
Ω (Omega) $=1.67=1 / 1.67=0.6$; Spec. Section 4.2.3 Eq. 4.2
Omega Welding $=2.00$ Ref. SJI Spec 4.2.3.4
Min. Thicknees Material $=1 / 8^{\prime \prime}=0.125 \mathrm{in}$.
Weld Size(tw) $=1 / 8^{\prime \prime}=0.125 \mathrm{in} .=2.000$
EFFECTIVE SLENDERNESS RATIOS TABLE 4.3-1
Maximun Slenderness Ratio (all = allowable)
Slenderness Ratio not excced 90

Data Member

Yield Stress: Fy=50 ksi
Modulus of Elasticity: E=29000 ksi
Area $=0.718$ in $\wedge 2 ; \mathrm{k}=0.318$ inches
Inertia $\mathrm{x}=0.156 \mathrm{in}^{\wedge} 4, \mathrm{ly}=0.479 \mathrm{in}^{\wedge} 4$
$r x=0.47 \mathrm{in} ; r y=0.82 \mathrm{in} ; \mathrm{y}=0.421 \mathrm{in}$
$\mathrm{Sx}=0.145 \mathrm{in}^{\wedge} 3$
$r z=0.296 \mathrm{in} ;$ Qs $=0.961$
Spacing between chord angles $=0.500$ in $=1 / 2^{\prime \prime}$
Combination; [SW=Self Weight; F=Factor]
COMB1 $=1.00 x D L+1.00 x L L+[S W$ F=1.00]
COMB2 $=$ Not Active or Null this Combination
COMB3 $=1.00 x L L+[S W$ F=1.00]
COMB4 $=0.60 x D L+1.00 x \mathrm{UP}+[S W$ F=0.60]

Summary Combination Maximun Results

COMB	T. FORCE	C. FORCE	SHEAR	MOM(Mi)	MOM(Me)
	Kips	Kips	Kips	K-in	K-in
COMB1	0.000	15.419	0.163	0.531	1.061
COMB2	0.000	0.000	0.000	0.531	0.000
COMB3	0.000	12.799	0.135	0.531	1.061
COMB4	6.235	0.000	0.056	0.531	1.061

Max. Local Shear $(\mathrm{V})=0.162818$ Kips; Location in COMB1
Max. Moment $(\mathrm{Me})=0.088426$ K-ft; Location in COMB1
Max. Moment (Mi) $=0.044213$ K-ft; Location in COMB1
Max. Tension = 6.235 Kips; Location in COMB4
Max. Compresion $=15.419$ Kips; Location in COMB1
Original COMPRESION = YES (Use for internal information only)

Location of Reaction of Force

Max. Reation (Comb. \#4)= -1.894 Kips-Use in web member w/Tension
Max. Reation (Comb. \#1) $=4.207$ Kips-Use in web member w/Compr.

Slenderness Ratio

k For Calculation Fcr per Table 4.3-1
(Comp.) Kx=0.00; Ky=0.00; Kz=0.75

Max. Axial Force Top \& Bottom Chord Local

Max. Compr (top chord) force $=15.790$ Kips in Member \#7; Comb1 Max. Tension (top chord) force $=6.361$ Kips in Member \#7; Comb4 Max. Compr (Bottom chord) force $=6.363$ Kips in Member \#20; Comb4
Max. Tension (Bottom chord) force $=15.790$ Kips in Member \#20; Comb1

CHECK SLENDERNESS RATIOS

Assume there are no fillers at the midpanel of top chorrd center panel.
S.R. $x=\left(L x^{*} 12\right) / r x=\left(1.67^{*} 12\right) / 0.47=42.91$
S.R. $y=\left(L y^{*} 12\right) / r y=\left(3.00^{*} 12\right) / 0.82=44.06$
S.R. $z=\left(L z^{*} 12\right) / r z=\left(1.67^{*} 12\right) / 0.30=67.57$

SLRtc $=$ Control $=67.568$
Comp. Ratio $=$ Control $/ 90=67.6 / 90=0.751$
Comp. Status: 0.75 < 1.00 <<-- OK
Tens. Ratio $=$ Control $/ 240=67.57 / 240=0.28$
Tens. Status: $0.28<1.00 \ll-$ OK
CHECK LATERAL STABILITY DURING ERECTION
Eq 5.5-2a; Eq 5.5-2b (Lenght bridging=Lbry=8.17)
L=22.00; dj=18.00; ry=0.817
Lbridging1 $\{$ EQ104.5-1a $=112.723 ;$ Lbridging2\{EQ104.5-2 $\}=138.893$
Lbrdg_gov = $112.72 \mathrm{in} ;$ Lbrdg_spcg $=98.00$ in
Control Ratio = (Lbrdg_spacg/Lbrdg_gov)=98.00/112.72=0.87
Status: 0.87 < 1.00 <<-- OK
CHECK COMPRESSION (4.2-4)
Shim, fillers or ties: NOT
S.R. $z=\left(k z^{*} L^{*} 12\right) / r z=\left(0.75^{*} 1.67^{*} 12\right) / 0.30=50.68$

SLRgov=50.68
Fy=50.00 ksi;
Area=0.72 in^2;Comp=15.42 kips; fa=Comp/Area=21.48 ksi
Fcr=40.13 ksi; Fa=0.6Fcr= 24.08 ksi
IRc=fa/Fa=21.475/24.077=0.890
Comp. Status: 0.89 <= $1.00 \ll-$ OK

CHECK TENSION (Eq. 4.2-2)

$\mathrm{ft}=$ Tens \times factor/Area $=(6.235 \times 1.000) / 0.718=8.683 \mathrm{ksi}$
$\mathrm{Ft}=0.6(\mathrm{Fy})=0.6 * 50.000=30.000 \mathrm{ksi}$
Ratio $=\mathrm{ft} / \mathrm{Ft}=8.68 / 30.00=0.29$
Status: $0.29<1.00$ <<-- OK
CHECK COMBINED AXIAL AND BENDING STRESSES
AT THE CENTER PANEL
Mpp=1.061 in-K; Mpnl=0.531 in-K; btc=1.50 in.; Ytc=0.42 in. Ixtc=0.16 in^4
fbu_pp $=7.34 \mathrm{ksi} . ;$ fbu_pnl $=1.43 \mathrm{ksi}$. fa=fau=fc=21.48; Atc=0.72 in^2
$\mathrm{Cm}=1-0.67^{*} \mathrm{fau} /$ Phi*F'e
Check Top Chord Center Panel for Combined Axial and Bending ASD SJI Eqs 4.4-9 \& 4.4-10
Fex=276.39 ksi; Fe_tc=111.45 ksi
$\mathrm{fa} /($ Fa_rc $)=0.892 ; \mathrm{Cm}=1-0.67$ (fau/Fex) $=0.948$
|Rtc_pnl=0.92
Status: 0.92 < 1.0 <<-- OK
AT THE PANEL POINT
IRtc_pnl=0.960
Status: $0.96<1.0 \ll-$ OK

CHECK SHEAR CAPACITY OF CHORD (Ref. SJI Spec. 4.4)

(Panel Point=Node=Joint).
Angle $\mathrm{b}=1.50$ in, Angle $\mathrm{t}=0.13$ in
OmegaW $=1.500 ; \mathrm{fn}=30.000 ; \mathrm{fn} \times$ OmegaW $=45.000$,Force $(\mathrm{P})=13.106$, $\mathrm{b}=1.500 \mathrm{in} ; \mathrm{t}=0.125 \mathrm{in} ; \mathrm{ft}=\mathrm{P} / \mathrm{A}=18.254$
Evaluation Node \#6; Shear $(\mathrm{V})=1.289 ; \mathrm{fv}=\mathrm{V} /\left(\mathrm{bt}{ }^{*} 2^{\star} \mathrm{t}\right)=3.437$; $\mathrm{fvmod}=9.752$
fvmod=(1/2)*(ft^2+4fv^2)^1/2=9.752 <= fn/OmegaW OK
Evaluation Node \#7; Shear(V) $=0.910 ; f v=V /(b t * 2)=2.425 ; ~ f v m o d=9.444$
fvmod=(1/2)*(ft^2+4fv^2)^1/2=9.444 <= fn/OmegaW OK

DESIGN MEMBER

INPUT FORM (ASD) Revision SJI 100-2020

Member Number = 7
Serial $=\mathrm{K}$
Member name = Top chord interior panel
Type = 2Angles(\#2)(1)
Section = ㄱ г
Designation = L1 1/2x1 1/2x1/8 (LLV); A = 0.718^2; Fy=50 ksi
Reinforcement = NA;
Span design = 260.00 in
Lenght Member $=1^{\prime}-8$ " $=1.667 \mathrm{ft}$. $=20.00 \mathrm{in}$.
Interior Panel Lenghtg (Lip) $=20$ in
Braced Top Chord (Metal Panel) Ly $=36$ in
Tension \& Compression Factor Design $=1.000$
Max. Code Check Ratio $=1.00$
Ω (Omega) $=1.67=1 / 1.67=0.6$; Spec. Section 4.2.3 Eq. 4.2
Omega Welding $=2.00$ Ref. SJI Spec 4.2.3.4
Min. Thicknees Material $=1 / 8^{\prime \prime}=0.125 \mathrm{in}$.
Weld Size(tw) $=1 / 8^{\prime \prime}=0.125 \mathrm{in} .=2.000$
EFFECTIVE SLENDERNESS RATIOS TABLE 4.3-1
Maximun Slenderness Ratio (all = allowable)
Slenderness Ratio not excced 90

Data Member

Yield Stress: Fy=50 ksi
Modulus of Elasticity: E=29000 ksi
Area $=0.718$ in $\wedge 2 ; \mathrm{k}=0.318$ inches
Inertia $\mathrm{x}=0.156 \mathrm{in}^{\wedge} 4, \mathrm{ly}=0.479 \mathrm{in}^{\wedge} 4$
$r x=0.47 \mathrm{in} ; r y=0.82 \mathrm{in} ; \mathrm{y}=0.421 \mathrm{in}$
$\mathrm{Sx}=0.145 \mathrm{in}^{\wedge} 3$
$r z=0.296 \mathrm{in} ;$ Qs $=0.961$
Spacing between chord angles $=0.500$ in $=1 / 2^{\prime \prime}$
Combination; [SW=Self Weight; F=Factor]
COMB1 $=1.00 x D L+1.00 x L L+[S W$ F=1.00]
COMB2 $=$ Not Active or Null this Combination
COMB3 $=1.00 x L L+[S W$ F=1.00]
COMB4 $=0.60 x D L+1.00 x \mathrm{UP}+[S W$ F=0.60]

Summary Combination Maximun Results

COMB	T. FORCE	C. FORCE	SHEAR	MOM(Mi)	MOM(Me)
Kips	Kips	Kips	K-in	K-in	
COMB1	0.000	15.790	0.160	0.531	1.061
COMB2	0.000	0.000	0.000	0.531	0.000
COMB3	0.000	13.107	0.133	0.531	1.061
COMB4	6.361	0.000	0.056	0.531	1.061

Max. Local Shear $(\mathrm{V})=0.160187$ Kips; Location in COMB1
Max. Moment $(\mathrm{Me})=0.088426$ K-ft; Location in COMB1
Max. Moment (Mi) $=0.044213$ K-ft; Location in COMB1
Max. Tension = 6.361 Kips; Location in COMB4
Max. Compresion = 15.790 Kips; Location in COMB1
Original COMPRESION = YES (Use for internal information only)

Location of Reaction of Force

Max. Reation (Comb. \#4)= -1.894 Kips-Use in web member w/Tension
Max. Reation (Comb. \#1) $=4.207$ Kips-Use in web member w/Compr.

Slenderness Ratio

k For Calculation Fcr per Table 4.3-1
(Comp.) Kx=0.00; Ky=0.00; Kz=0.75

Max. Axial Force Top \& Bottom Chord Local

Max. Compr (top chord) force $=15.790$ Kips in Member \#7; Comb1 Max. Tension (top chord) force $=6.361$ Kips in Member \#7; Comb4 Max. Compr (Bottom chord) force $=6.363$ Kips in Member \#20; Comb4
Max. Tension (Bottom chord) force $=15.790$ Kips in Member \#20; Comb1

CHECK SLENDERNESS RATIOS

Assume there are no fillers at the midpanel of top chorrd center panel.
S.R. $x=\left(L x^{*} 12\right) / r x=\left(1.67^{*} 12\right) / 0.47=42.91$
S.R. $y=\left(L y^{*} 12\right) / r y=\left(3.00^{*} 12\right) / 0.82=44.06$
S.R. $z=\left(L z^{*} 12\right) / r z=\left(1.67^{*} 12\right) / 0.30=67.57$

SLRtc $=$ Control $=67.568$
Comp. Ratio $=$ Control $/ 90=67.6 / 90=0.751$
Comp. Status: 0.75 < 1.00 <<-- OK
Tens. Ratio $=$ Control $/ 240=67.57 / 240=0.28$
Tens. Status: $0.28<1.00 \ll-$ OK
CHECK LATERAL STABILITY DURING ERECTION
Eq 5.5-2a; Eq 5.5-2b (Lenght bridging=Lbry=8.17)
L=22.00; dj=18.00; ry=0.817
Lbridging1 $\{$ EQ104.5-1a $=112.723 ;$ Lbridging2\{EQ104.5-2 $\}=138.893$
Lbrdg_gov = $112.72 \mathrm{in} ;$ Lbrdg_spcg $=98.00$ in
Control Ratio = (Lbrdg_spacg/Lbrdg_gov)=98.00/112.72=0.87
Status: 0.87 < 1.00 <<-- OK
CHECK COMPRESSION (4.2-4)
Shim, fillers or ties: NOT
S.R. $z=\left(k z^{*} L^{*} 12\right) / r z=\left(0.75^{*} 1.67^{*} 12\right) / 0.30=50.68$

SLRgov=50.68
Fy=50.00 ksi;
Area=0.72 in^2;Comp=15.79 kips; fa=Comp/Area=21.99 ksi
Fcr=40.13 ksi; Fa=0.6Fcr= 24.08 ksi
IRc=fa/Fa=21.991/24.077=0.910
Comp. Status: 0.91 <= 1.00 <<-- OK

CHECK TENSION (Eq. 4.2-2)

$\mathrm{ft}=$ Tens \times factor/Area $=(6.361 \times 1.000) / 0.718=8.860 \mathrm{ksi}$
$\mathrm{Ft}=0.6(\mathrm{Fy})=0.6^{*} 50.000=30.000 \mathrm{ksi}$
Ratio $=\mathrm{ft} / \mathrm{Ft}=8.86 / 30.00=0.29$
Status: $0.29<1.00$ <<-- OK
CHECK COMBINED AXIAL AND BENDING STRESSES
AT THE CENTER PANEL
Mpp=1.061 in-K; Mpnl=0.531 in-K; btc=1.50 in.; Ytc=0.42 in. Ixtc=0.16 in^4
fbu_pp $=7.34 \mathrm{ksi} . ;$ fbu_pnl $=1.43 \mathrm{ksi}$. fa=fau=fc=21.99; Atc=0.72 in^2
$\mathrm{Cm}=1-0.67^{*} \mathrm{fau} /$ Phi*F'e
Check Top Chord Center Panel for Combined Axial and Bending ASD SJI Eqs 4.4-9 \& 4.4-10
Fex=276.39 ksi; Fe_tc=111.45 ksi
$\mathrm{fa} /($ Fa_rc $)=0.913 ; \mathrm{Cm}=1-0.67(\mathrm{fau} / \mathrm{Fex})=0.947$
|Rtc_pnl=0.94
Status: 0.94 < 1.0 <<-- OK
AT THE PANEL POINT
IRtc_pnl=0.978
Status: 0.98 < 1.0 <<-- OK

CHECK SHEAR CAPACITY OF CHORD (Ref. SJI Spec. 4.4)

(Panel Point=Node=Joint).
Angle $\mathrm{b}=1.50$ in, Angle $\mathrm{t}=0.13$ in
OmegaW $=1.500 ; \mathrm{fn}=30.000 ; \mathrm{fn} \times$ OmegaW $=45.000$,Force(P$)=13.421$, $\mathrm{b}=1.500 \mathrm{in} ; \mathrm{t}=0.125 \mathrm{in} ; \mathrm{ft}=\mathrm{P} / \mathrm{A}=18.693$
Evaluation Node \#7; Shear $(\mathrm{V})=0.910 ; f v=\mathrm{V} /\left(\mathrm{bt}{ }^{*} 2^{*} \mathrm{t}\right)=2.425 ; f v m o d=9.656$
fvmod=(1/2)*(ft^2+4fv^2)^1/2=9.656 <= fn/OmegaW OK
Evaluation Node \#8; Shear $(\mathrm{V})=0.910 ; f v=\mathrm{V} /\left(\mathrm{bt}{ }^{*} 2\right)=2.425$; fvmod=9.656
fvmod=(1/2)*(ft^2+4fv^2)^1/2=9.656 <= fn/OmegaW OK

DESIGN MEMBER

INPUT FORM (ASD) Revision SJI 100-2020
Member Number = 8
Serial $=\mathrm{K}$
Member name = Top chord interior panel
Type = 2Angles(\#2)(1)
Section = ㄱ г
Designation = L1 1/2x1 1/2x1/8 (LLV); A = 0.718^2; Fy=50 ksi
Reinforcement = NA;
Span design = 260.00 in
Lenght Member $=1^{\prime}-8$ " $=1.667 \mathrm{ft}$. $=20.00 \mathrm{in}$.
Interior Panel Lenghtg (Lip) $=20$ in
Braced Top Chord (Metal Panel) Ly $=36$ in
Tension \& Compression Factor Design $=1.000$
Max. Code Check Ratio $=1.00$
Ω (Omega) $=1.67=1 / 1.67=0.6$; Spec. Section 4.2.3 Eq. 4.2
Omega Welding $=2.00$ Ref. SJI Spec 4.2.3.4
Min. Thicknees Material $=1 / 8^{\prime \prime}=0.125 \mathrm{in}$.
Weld Size(tw) $=1 / 8^{\prime \prime}=0.125 \mathrm{in} .=2.000$
EFFECTIVE SLENDERNESS RATIOS TABLE 4.3-1
Maximun Slenderness Ratio (all = allowable)
Slenderness Ratio not excced 90

Data Member

Yield Stress: Fy=50 ksi
Modulus of Elasticity: E=29000 ksi
Area $=0.718$ in $\wedge 2 ; \mathrm{k}=0.318$ inches
Inertia $\mathrm{x}=0.156 \mathrm{in}^{\wedge} 4, \mathrm{ly}=0.479 \mathrm{in}^{\wedge} 4$
$r x=0.47 \mathrm{in} ; r y=0.82 \mathrm{in} ; \mathrm{y}=0.421 \mathrm{in}$
$\mathrm{Sx}=0.145 \mathrm{in}^{\wedge} 3$
$\mathrm{rz}=0.296 \mathrm{in} ;$ Qs $=0.961$
Spacing between chord angles $=0.500$ in $=1 / 2^{\prime \prime}$
Combination; [SW=Self Weight; F=Factor]
COMB1 $=1.00 x D L+1.00 x L L+[S W$ F=1.00]
COMB2 $=$ Not Active or Null this Combination
COMB3 $=1.00 x L L+[S W$ F=1.00]
COMB4 $=0.60 x D L+1.00 x \mathrm{UP}+[S W$ F=0.60]

Summary Combination Maximun Results

COMB	T. FORCE	C. FORCE	SHEAR	MOM(Mi)	MOM(Me)
	Kips	Kips	Kips	K-in	K-in
COMB1	0.000	15.419	0.163	0.531	1.061
COMB2	0.000	0.000	0.000	0.531	0.000
COMB3	0.000	12.799	0.135	0.531	1.061
COMB4	6.235	0.000	0.056	0.531	1.061

Max. Local Shear $(\mathrm{V})=0.162818$ Kips; Location in COMB1
Max. Moment $(\mathrm{Me})=0.088426$ K-ft; Location in COMB1
Max. Moment (Mi) $=0.044213$ K-ft; Location in COMB1
Max. Tension = 6.235 Kips; Location in COMB4
Max. Compresion = 15.419 Kips; Location in COMB1
Original COMPRESION = YES (Use for internal information only)

Location of Reaction of Force

Max. Reation (Comb. \#4)= -1.894 Kips-Use in web member w/Tension
Max. Reation (Comb. \#1) $=4.207$ Kips-Use in web member w/Compr.

Slenderness Ratio

k For Calculation Fcr per Table 4.3-1
(Comp.) Kx=0.00; Ky=0.00; Kz=0.75

Max. Axial Force Top \& Bottom Chord Local

Max. Compr (top chord) force $=15.790$ Kips in Member \#7; Comb1 Max. Tension (top chord) force $=6.361$ Kips in Member \#7; Comb4 Max. Compr (Bottom chord) force $=6.363$ Kips in Member \#20; Comb4
Max. Tension (Bottom chord) force $=15.790$ Kips in Member \#20; Comb1

CHECK SLENDERNESS RATIOS

Assume there are no fillers at the midpanel of top chorrd center panel.
S.R. $x=\left(L x^{*} 12\right) / r x=\left(1.67^{*} 12\right) / 0.47=42.91$
S.R. $y=\left(L y^{*} 12\right) / r y=\left(3.00^{*} 12\right) / 0.82=44.06$
S.R. $z=\left(L z^{*} 12\right) / r z=\left(1.67^{*} 12\right) / 0.30=67.57$

SLRtc $=$ Control $=67.568$
Comp. Ratio $=$ Control $/ 90=67.6 / 90=0.751$
Comp. Status: 0.75 < 1.00 <<-- OK
Tens. Ratio $=$ Control $/ 240=67.57 / 240=0.28$
Tens. Status: $0.28<1.00 \ll-$ OK
CHECK LATERAL STABILITY DURING ERECTION
Eq 5.5-2a; Eq 5.5-2b (Lenght bridging=Lbry=8.17)
L=22.00; dj=18.00; ry=0.817
Lbridging1 $\{$ EQ104.5-1a $=112.723 ;$ Lbridging2\{EQ104.5-2 $\}=138.893$
Lbrdg_gov = $112.72 \mathrm{in} ;$ Lbrdg_spcg $=98.00$ in
Control Ratio = (Lbrdg_spacg/Lbrdg_gov)=98.00/112.72=0.87
Status: 0.87 < 1.00 <<-- OK
CHECK COMPRESSION (4.2-4)
Shim, fillers or ties: NOT
S.R. $z=\left(k z^{*} L^{*} 12\right) / r z=\left(0.75^{*} 1.67^{*} 12\right) / 0.30=50.68$

SLRgov=50.68
Fy=50.00 ksi;
Area=0.72 in^2;Comp=15.42 kips; fa=Comp/Area=21.48 ksi
Fcr=40.13 ksi; Fa=0.6Fcr= 24.08 ksi
IRc=fa/Fa=21.475/24.077=0.890
Comp. Status: 0.89 <= $1.00 \ll-$ OK

CHECK TENSION (Eq. 4.2-2)

$\mathrm{ft}=$ Tens \times factor/Area $=(6.235 \times 1.000) / 0.718=8.683 \mathrm{ksi}$
$\mathrm{Ft}=0.6(\mathrm{Fy})=0.6 * 50.000=30.000 \mathrm{ksi}$
Ratio $=\mathrm{ft} / \mathrm{Ft}=8.68 / 30.00=0.29$
Status: $0.29<1.00$ <<-- OK
CHECK COMBINED AXIAL AND BENDING STRESSES
AT THE CENTER PANEL
Mpp=1.061 in-K; Mpnl=0.531 in-K; btc=1.50 in.; Ytc=0.42 in. Ixtc=0.16 in^4 fbu_pp $=7.34 \mathrm{ksi} . ;$ fbu_pnl $=1.43 \mathrm{ksi}$. fa=fau=fc=21.48; Atc=0.72 in^2 $\mathrm{Cm}=1-0.67^{\star} \mathrm{fau} /$ Phi*F'e
Check Top Chord Center Panel for Combined Axial and Bending ASD SJI Eqs 4.4-9 \& 4.4-10
Fex=276.39 ksi; Fe_tc=111.45 ksi
$\mathrm{fa} /($ Fa_rc $)=0.892 ; \mathrm{Cm}=1-0.67$ (fau/Fex) $=0.948$
|Rtc_pnl=0.92
Status: 0.92 < 1.0 <<-- OK
AT THE PANEL POINT
IRtc_pnl=0.960
Status: 0.96 < 1.0 <<-- OK

CHECK SHEAR CAPACITY OF CHORD (Ref. SJI Spec. 4.4)

(Panel Point=Node=Joint).
Angle $\mathrm{b}=1.50$ in, Angle $\mathrm{t}=0.13$ in
OmegaW=1.500;fn=30.000;fn \times OmegaW $=45.000$,Force $(P)=13.106$, $\mathrm{b}=1.500 \mathrm{in} ; \mathrm{t}=0.125 \mathrm{in} ; \mathrm{ft}=\mathrm{P} / \mathrm{A}=18.254$
Evaluation Node \#8; Shear(V) $=0.910 ; f v=V /\left(b t^{*} 2^{*} t\right)=2.425 ; f v m o d=9.444$
fvmod=(1/2)*(ft^2+4fv^2)^1/2=9.444 <= fn/OmegaW OK
Evaluation Node \#9; Shear(V) = 1.289; fv=V/(bt*2)=3.437; fvmod=9.752
fvmod=(1/2)*(ft^2+4fv^2)^1/2=9.752 <= fn/OmegaW OK

DESIGN MEMBER

INPUT FORM (ASD) Revision SJI 100-2020
Member Number = 9
Serial $=\mathrm{K}$
Member name = Top chord interior panel
Type = 2Angles(\#2)(1)
Section = ㄱ г
Designation = L1 1/2x1 1/2x1/8 (LLV); A = 0.718^2; Fy=50 ksi
Reinforcement = NA;
Span design = 260.00 in
Lenght Member $=1^{\prime}-8$ " $=1.667 \mathrm{ft}$. $=20.00 \mathrm{in}$.
Interior Panel Lenghtg (Lip) $=20$ in
Braced Top Chord (Metal Panel) Ly $=36$ in
Tension \& Compression Factor Design $=1.000$
Max. Code Check Ratio $=1.00$
Ω (Omega) $=1.67=1 / 1.67=0.6$; Spec. Section 4.2.3 Eq. 4.2
Omega Welding $=2.00$ Ref. SJI Spec 4.2.3.4
Min. Thicknees Material $=1 / 8^{\prime \prime}=0.125 \mathrm{in}$.
Weld Size(tw) $=1 / 8^{\prime \prime}=0.125 \mathrm{in} .=2.000$
EFFECTIVE SLENDERNESS RATIOS TABLE 4.3-1
Maximun Slenderness Ratio (all = allowable)
Slenderness Ratio not excced 90

Data Member

Yield Stress: Fy=50 ksi
Modulus of Elasticity: E=29000 ksi
Area $=0.718$ in $\wedge 2 ; \mathrm{k}=0.318$ inches
Inertia $\mathrm{x}=0.156 \mathrm{in}^{\wedge} 4, \mathrm{ly}=0.479 \mathrm{in}^{\wedge} 4$
$r x=0.47 \mathrm{in} ; r y=0.82 \mathrm{in} ; \mathrm{y}=0.421 \mathrm{in}$
$\mathrm{Sx}=0.145 \mathrm{in}^{\wedge} 3$
$\mathrm{rz}=0.296 \mathrm{in} ;$ Qs $=0.961$
Spacing between chord angles $=0.500$ in $=1 / 2^{\prime \prime}$
Combination; [SW=Self Weight; F=Factor]
COMB1 $=1.00 x D L+1.00 x L L+[S W$ F=1.00]
COMB2 $=$ Not Active or Null this Combination
COMB3 $=1.00 x L L+[S W$ F=1.00]
COMB4 $=0.60 x D L+1.00 x \mathrm{UP}+[S W$ F=0.60]

Summary Combination Maximun Results

COMB	T. FORCE	C. FORCE	SHEAR	MOM(Mi)	MOM(Me)
	Kips	Kips	Kips	K-in	K-in
COMB1	0.000	14.295	0.163	0.531	1.061
COMB2	0.000	0.000	0.000	0.531	0.000
COMB3	0.000	11.866	0.135	0.531	1.061
COMB4	5.855	0.000	0.062	0.531	1.061

Max. Local Shear $(\mathrm{V})=0.163100$ Kips; Location in COMB1
Max. Moment $(\mathrm{Me})=0.088426$ K-ft; Location in COMB1
Max. Moment (Mi) $=0.044213$ K-ft; Location in COMB1
Max. Tension = 5.855 Kips; Location in COMB4
Max. Compresion = 14.295 Kips; Location in COMB1
Original COMPRESION = YES (Use for internal information only)

Location of Reaction of Force

Max. Reation (Comb. \#4)= -1.894 Kips-Use in web member w/Tension
Max. Reation (Comb. \#1) $=4.207$ Kips-Use in web member w/Compr.

Slenderness Ratio

k For Calculation Fcr per Table 4.3-1
(Comp.) Kx=0.00; Ky=0.00; Kz=0.75

Max. Axial Force Top \& Bottom Chord Local

Max. Compr (top chord) force $=15.790$ Kips in Member \#7; Comb1 Max. Tension (top chord) force $=6.361$ Kips in Member \#7; Comb4 Max. Compr (Bottom chord) force $=6.363$ Kips in Member \#20; Comb4
Max. Tension (Bottom chord) force $=15.790$ Kips in Member \#20; Comb1

CHECK SLENDERNESS RATIOS

Assume there are no fillers at the midpanel of top chorrd center panel.
S.R. $x=\left(L x^{*} 12\right) / r x=\left(1.67^{*} 12\right) / 0.47=42.91$
S.R. $y=\left(L y^{*} 12\right) / r y=\left(3.00^{*} 12\right) / 0.82=44.06$
S.R. $z=\left(L z^{*} 12\right) / r z=\left(1.67^{*} 12\right) / 0.30=67.57$

SLRtc $=$ Control $=67.568$
Comp. Ratio $=$ Control $/ 90=67.6 / 90=0.751$
Comp. Status: 0.75 < 1.00 <<-- OK
Tens. Ratio $=$ Control $/ 240=67.57 / 240=0.28$
Tens. Status: $0.28<1.00 \ll-$ OK
CHECK LATERAL STABILITY DURING ERECTION
Eq 5.5-2a; Eq 5.5-2b (Lenght bridging=Lbry=8.17)
L=22.00; dj=18.00; ry=0.817
Lbridging1 $\{$ EQ104.5-1a $=112.723 ;$ Lbridging2\{EQ104.5-2 $\}=138.893$
Lbrdg_gov = $112.72 \mathrm{in} ;$ Lbrdg_spcg $=98.00$ in
Control Ratio = (Lbrdg_spacg/Lbrdg_gov)=98.00/112.72=0.87
Status: 0.87 < 1.00 <<-- OK
CHECK COMPRESSION (4.2-4)
Shim, fillers or ties: NOT
S.R. $z=\left(k z^{*} L^{*} 12\right) / r z=\left(0.75^{*} 1.67^{*} 12\right) / 0.30=50.68$

SLRgov=50.68
Fy=50.00 ksi;
Area=0.72 in^2;Comp=14.30 kips; fa=Comp/Area=19.91 ksi
Fcr=40.13 ksi; Fa=0.6Fcr= 24.08 ksi
IRc=fa/Fa=19.910/24.077=0.830
Comp. Status: 0.83 <= $1.00 \ll-$ OK

CHECK TENSION (Eq. 4.2-2)

$\mathrm{ft}=$ Tens \times factor/Area $=(5.855 \times 1.000) / 0.718=8.155 \mathrm{ksi}$
$\mathrm{Ft}=0.6(\mathrm{Fy})=0.6 * 50.000=30.000 \mathrm{ksi}$
Ratio $=\mathrm{ft} / \mathrm{Ft}=8.15 / 30.00=0.27$
Status: 0.27 < 1.00 <<-- OK
CHECK COMBINED AXIAL AND BENDING STRESSES
AT THE CENTER PANEL
Mpp=1.061 in-K; Mpnl=0.531 in-K; btc=1.50 in.; Ytc=0.42 in. Ixtc=0.16 in^4 fbu_pp $=7.34$ ksi.; fbu_pnl $=1.43 \mathrm{ksi}$. fa=fau=fc=19.91; Atc=0.72 in^2 $\mathrm{Cm}=1-0.67^{\star} \mathrm{fau} /$ Phi*F'e
Check Top Chord Center Panel for Combined Axial and Bending ASD SJI Eqs 4.4-9 \& 4.4-10
Fex=276.39 ksi; Fe_tc=111.45 ksi
$\mathrm{fa} /($ Fa_rc $)=0.827 ; \mathrm{Cm}=1-0.67$ (fau/Fex) $=0.952$
|Rtc_pnl=0.85
Status: 0.85 < 1.0 <<-- OK
AT THE PANEL POINT
IRtc_pnl=0.908
Status: $0.91<1.0$ <<-- OK

CHECK SHEAR CAPACITY OF CHORD (Ref. SJI Spec. 4.4)

(Panel Point=Node=Joint).
Angle $\mathrm{b}=1.50 \mathrm{in}$, Angle $\mathrm{t}=0.13$ in
OmegaW $=1.500 ; \mathrm{fn}=30.000 ; \mathrm{fn} \times$ OmegaW $=45.000$,Force $(\mathrm{P})=12.151$, $\mathrm{b}=1.500 \mathrm{in} ; \mathrm{t}=0.125 \mathrm{in} ; \mathrm{ft}=\mathrm{P} / \mathrm{A}=16.923$
Evaluation Node \#9; Shear $(\mathrm{V})=1.289 ; f v=\mathrm{V} /\left(\mathrm{bt}{ }^{*} 2^{*} \mathrm{t}\right)=3.437$; fvmod=9.133
fvmod=(1/2)*(ft^2+4fv^2)^1/2=9.133 <=fn/OmegaW OK
Evaluation Node \#10; Shear(V) = 1.943; fv=V/(bt*2)=5.181; fvmod=9.922 fvmod=(1/2)*(ft^2+4fv^2)^1/2=9.922 <= fn/OmegaW OK

DESIGN MEMBER

INPUT FORM (ASD) Revision SJI 100-2020
Member Number = 10
Serial $=\mathrm{K}$
Member name = Top chord interior panel
Type = 2Angles(\#2)(1)
Section = ㄱ г
Designation = L1 1/2x1 1/2x1/8 (LLV); A = 0.718^2; Fy=50 ksi
Reinforcement = NA;
Span design = 260.00 in
Lenght Member $=1^{\prime}-8$ " $=1.667 \mathrm{ft}$. $=20.00 \mathrm{in}$.
Interior Panel Lenghtg (Lip) $=20$ in
Braced Top Chord (Metal Panel) Ly $=36$ in
Tension \& Compression Factor Design $=1.000$
Max. Code Check Ratio $=1.00$
Ω (Omega) $=1.67=1 / 1.67=0.6$; Spec. Section 4.2.3 Eq. 4.2
Omega Welding $=2.00$ Ref. SJI Spec 4.2.3.4
Min. Thicknees Material $=1 / 8^{\prime \prime}=0.125 \mathrm{in}$.
Weld Size(tw) $=1 / 8^{\prime \prime}=0.125 \mathrm{in} .=2.000$
EFFECTIVE SLENDERNESS RATIOS TABLE 4.3-1
Maximun Slenderness Ratio (all = allowable)
Slenderness Ratio not excced 90

Data Member

Yield Stress: Fy=50 ksi
Modulus of Elasticity: E=29000 ksi
Area $=0.718$ in $\wedge 2 ; \mathrm{k}=0.318$ inches
Inertia $\mathrm{x}=0.156 \mathrm{in}^{\wedge} 4, \mathrm{ly}=0.479 \mathrm{in}^{\wedge} 4$
$r x=0.47 \mathrm{in} ; r y=0.82 \mathrm{in} ; \mathrm{y}=0.421 \mathrm{in}$
$\mathrm{Sx}=0.145 \mathrm{in}^{\wedge} 3$
$\mathrm{rz}=0.296 \mathrm{in} ;$ Qs $=0.961$
Spacing between chord angles $=0.500$ in $=1 / 2^{\prime \prime}$
Combination; [SW=Self Weight; F=Factor]
COMB1 $=1.00 x D L+1.00 x L L+[S W$ F=1.00]
COMB2 $=$ Not Active or Null this Combination
COMB3 $=1.00 x L L+[S W$ F=1.00]
COMB4 $=0.60 x D L+1.00 x \mathrm{UP}+[S W$ F=0.60]

Summary Combination Maximun Results

COMB	T. FORCE	C. FORCE	SHEAR	MOM(Mi)	MOM(Me)
	Kips	Kips	Kips	K-in	K-in
COMB1	0.000	12.417	0.166	0.531	1.061
COMB2	0.000	0.000	0.000	0.531	0.000
COMB3	0.000	10.307	0.137	0.531	1.061
COMB4	5.205	0.000	0.088	0.531	1.061

Max. Local Shear $(\mathrm{V})=0.165717$ Kips; Location in COMB1
Max. Moment $(\mathrm{Me})=0.088426$ K-ft; Location in COMB1
Max. Moment (Mi) $=0.044213$ K-ft; Location in COMB1
Max. Tension = 5.205 Kips; Location in COMB4
Max. Compresion = 12.417 Kips; Location in COMB1
Original COMPRESION = YES (Use for internal information only)

Location of Reaction of Force

Max. Reation (Comb. \#4)= -1.894 Kips-Use in web member w/Tension
Max. Reation (Comb. \#1) $=4.207$ Kips-Use in web member w/Compr.

Slenderness Ratio

k For Calculation Fcr per Table 4.3-1
(Comp.) Kx=0.00; Ky=0.00; Kz=0.75

Max. Axial Force Top \& Bottom Chord Local

Max. Compr (top chord) force $=15.790$ Kips in Member \#7; Comb1 Max. Tension (top chord) force $=6.361$ Kips in Member \#7; Comb4 Max. Compr (Bottom chord) force $=6.363$ Kips in Member \#20; Comb4
Max. Tension (Bottom chord) force $=15.790$ Kips in Member \#20; Comb1

CHECK SLENDERNESS RATIOS

Assume there are no fillers at the midpanel of top chorrd center panel.
S.R. $x=\left(L x^{*} 12\right) / r x=\left(1.67^{*} 12\right) / 0.47=42.91$
S.R. $y=\left(L y^{*} 12\right) / r y=\left(3.00^{*} 12\right) / 0.82=44.06$
S.R. $z=\left(L z^{*} 12\right) / r z=\left(1.67^{*} 12\right) / 0.30=67.57$

SLRtc $=$ Control $=67.568$
Comp. Ratio $=$ Control $/ 90=67.6 / 90=0.751$
Comp. Status: 0.75 < 1.00 <<-- OK
Tens. Ratio $=$ Control $/ 240=67.57 / 240=0.28$
Tens. Status: $0.28<1.00 \ll-$ OK
CHECK LATERAL STABILITY DURING ERECTION
Eq 5.5-2a; Eq 5.5-2b (Lenght bridging=Lbry=8.17)
L=22.00; dj=18.00; ry=0.817
Lbridging1 $\{$ EQ104.5-1a $=112.723 ;$ Lbridging2\{EQ104.5-2 $\}=138.893$
Lbrdg_gov = $112.72 \mathrm{in} ;$ Lbrdg_spcg $=98.00$ in
Control Ratio = (Lbrdg_spacg/Lbrdg_gov)=98.00/112.72=0.87
Status: 0.87 < 1.00 <<-- OK
CHECK COMPRESSION (4.2-4)
Shim, fillers or ties: NOT
S.R. $z=\left(k z^{*}{ }^{*} 12\right) / r z=\left(0.75^{*} 1.67^{*} 12\right) / 0.30=50.68$

SLRgov=50.68
Fy=50.00 ksi;
Area=0.72 in^2;Comp=12.42 kips; fa=Comp/Area=17.29 ksi
Fcr=40.13 ksi; Fa=0.6Fcr= 24.08 ksi
IRc=fa/Fa=17.293/24.077=0.720
Comp. Status: 0.72 <= $1.00 \ll-$ OK

CHECK TENSION (Eq. 4.2-2)

$\mathrm{ft}=$ Tens \times factor/Area $=(5.205 \times 1.000) / 0.718=7.249 \mathrm{ksi}$
$\mathrm{Ft}=0.6(\mathrm{Fy})=0.6 * 50.000=30.000 \mathrm{ksi}$
Ratio $=\mathrm{ft} / \mathrm{Ft}=7.25 / 30.00=0.24$
Status: 0.24 < 1.00 <<-- OK
CHECK COMBINED AXIAL AND BENDING STRESSES
AT THE CENTER PANEL
Mpp=1.061 in-K; Mpnl=0.531 in-K; btc=1.50 in.; Ytc=0.42 in. Ixtc=0.16 in^4 fbu_pp $=7.34 \mathrm{ksi} . ;$ fbu_pnl $=1.43 \mathrm{ksi}$. fa=fau=fc=17.29; Atc=0.72 in^2 $\mathrm{Cm}=1-0.67^{\star} \mathrm{fau} /$ Phi*F'e
Check Top Chord Center Panel for Combined Axial and Bending ASD SJI Eqs 4.4-9 \& 4.4-10
Fex=276.39 ksi; Fe_tc=111.45 ksi
$\mathrm{fa} /($ Fa_rc $)=0.718 ; \mathrm{Cm}=1-0.67(\mathrm{fau} / \mathrm{Fex})=0.958$
IRtc_pnl=0.75
Status: 0.75 < 1.0 <<-- OK
AT THE PANEL POINT
IRtc_pnl=0.821
Status: 0.82 < 1.0 <<-- OK

CHECK SHEAR CAPACITY OF CHORD (Ref. SJI Spec. 4.4)

(Panel Point=Node=Joint).
Angle $\mathrm{b}=1.50 \mathrm{in}$, Angle $\mathrm{t}=0.13$ in
OmegaW=1.500;fn $=30.000 ; \mathrm{fn} \times$ OmegaW $=45.000$,Force(P) $=10.554$, $\mathrm{b}=1.500 \mathrm{in} ; \mathrm{t}=0.125 \mathrm{in} ; \mathrm{ft}=\mathrm{P} / \mathrm{A}=14.699$
Evaluation Node \#10; Shear(V) = 1.943; fv=V/(bt*2*t)=5.181; fvmod=8.992
fvmod=(1/2)*(ft^2+4fv^2)^1/2=8.992 <= fn/OmegaW OK
Evaluation Node \#11; Shear(V) $=2.536$; $\mathrm{fv}=\mathrm{V} /\left(\mathrm{bt}{ }^{*} 2\right)=6.764$; fvmod=9.988 fvmod=(1/2)*(ft^2+4fv^2)^1/2=9.988 <= fn/OmegaW OK

DESIGN MEMBER

INPUT FORM (ASD) Revision SJI 100-2020

Member Number = 11
Serial $=\mathrm{K}$
Member name = Top chord interior panel
Type = 2Angles(\#2)(1)
Section = ㄱ г
Designation = L1 1/2x1 1/2x1/8 (LLV); A = 0.718^2; Fy=50 ksi
Reinforcement = NA;
Span design = 260.00 in
Lenght Member $=1^{\prime}-8$ " $=1.667 \mathrm{ft}$. $=20.00 \mathrm{in}$.
Interior Panel Lenghtg (Lip) $=20$ in
Braced Top Chord (Metal Panel) Ly $=36$ in
Tension \& Compression Factor Design $=1.000$
Max. Code Check Ratio $=1.00$
Ω (Omega) $=1.67=1 / 1.67=0.6$; Spec. Section 4.2.3 Eq. 4.2
Omega Welding $=2.00$ Ref. SJI Spec 4.2.3.4
Min. Thicknees Material $=1 / 8^{\prime \prime}=0.125 \mathrm{in}$.
Weld Size(tw) $=1 / 8^{\prime \prime}=0.125 \mathrm{in} .=2.000$
EFFECTIVE SLENDERNESS RATIOS TABLE 4.3-1
Maximun Slenderness Ratio (all = allowable)
Slenderness Ratio not excced 90

Data Member

Yield Stress: Fy=50 ksi
Modulus of Elasticity: E=29000 ksi
Area $=0.718$ in $\wedge 2 ; \mathrm{k}=0.318$ inches
Inertia $\mathrm{x}=0.156 \mathrm{in}^{\wedge} 4, \mathrm{ly}=0.479 \mathrm{in}^{\wedge} 4$
$r x=0.47 \mathrm{in} ; r y=0.82 \mathrm{in} ; \mathrm{y}=0.421 \mathrm{in}$
$\mathrm{Sx}=0.145 \mathrm{in}^{\wedge} 3$
$r z=0.296 \mathrm{in} ;$ Qs $=0.961$
Spacing between chord angles $=0.500$ in $=1 / 2^{\prime \prime}$
Combination; [SW=Self Weight; F=Factor]
COMB1 $=1.00 x D L+1.00 x L L+[S W$ F=1.00]
COMB2 $=$ Not Active or Null this Combination
COMB3 $=1.00 x L L+[S W$ F=1.00]
COMB4 $=0.60 x D L+1.00 x \mathrm{UP}+[S W$ F=0.60]

Summary Combination Maximun Results

COMB	T. FORCE	C. FORCE	SHEAR	MOM(Mi)	MOM(Me)
Kips	Kips	Kips	K-in	K-in	
COMB1	0.000	9.813	0.207	0.531	1.061
COMB2	0.000	0.000	0.000	0.531	0.000
COMB3	0.000	8.146	0.172	0.531	1.061
COMB4	4.219	0.000	0.109	0.531	1.061

Max. Local Shear $(\mathrm{V})=0.207352$ Kips; Location in COMB1
Max. Moment $(\mathrm{Me})=0.088426$ K-ft; Location in COMB1
Max. Moment (Mi) $=0.044213$ K-ft; Location in COMB1
Max. Tension = 4.219 Kips; Location in COMB4
Max. Compresion = 9.813 Kips; Location in COMB1
Original COMPRESION = YES (Use for internal information only)

Location of Reaction of Force

Max. Reation (Comb. \#4)= -1.894 Kips-Use in web member w/Tension
Max. Reation (Comb. \#1) $=4.207$ Kips-Use in web member w/Compr.

Slenderness Ratio

k For Calculation Fcr per Table 4.3-1
(Comp.) Kx=0.00; Ky=0.00; Kz=0.75

Max. Axial Force Top \& Bottom Chord Local

Max. Compr (top chord) force $=15.790$ Kips in Member \#7; Comb1 Max. Tension (top chord) force $=6.361$ Kips in Member \#7; Comb4 Max. Compr (Bottom chord) force $=6.363$ Kips in Member \#20; Comb4
Max. Tension (Bottom chord) force $=15.790$ Kips in Member \#20; Comb1

CHECK SLENDERNESS RATIOS

Assume there are no fillers at the midpanel of top chorrd center panel.
S.R. $x=\left(L x^{*} 12\right) / r x=\left(1.67^{*} 12\right) / 0.47=42.91$
S.R. $y=\left(L y^{*} 12\right) / r y=\left(3.00^{*} 12\right) / 0.82=44.06$
S.R. $z=\left(L z^{*} 12\right) / r z=\left(1.67^{*} 12\right) / 0.30=67.57$

SLRtc $=$ Control $=67.568$
Comp. Ratio $=$ Control $/ 90=67.6 / 90=0.751$
Comp. Status: 0.75 < 1.00 <<-- OK
Tens. Ratio $=$ Control $/ 240=67.57 / 240=0.28$
Tens. Status: $0.28<1.00 \ll-$ OK
CHECK LATERAL STABILITY DURING ERECTION
Eq 5.5-2a; Eq 5.5-2b (Lenght bridging=Lbry=8.17)
L=22.00; dj=18.00; ry=0.817
Lbridging1 $\{$ EQ104.5-1a $=112.723 ;$ Lbridging2\{EQ104.5-2 $\}=138.893$
Lbrdg_gov = $112.72 \mathrm{in} ;$ Lbrdg_spcg $=98.00$ in
Control Ratio = (Lbrdg_spacg/Lbrdg_gov)=98.00/112.72=0.87
Status: 0.87 < 1.00 <<-- OK
CHECK COMPRESSION (4.2-4)
Shim, fillers or ties: NOT
S.R. $z=\left(k z^{*} L^{*} 12\right) / r z=\left(0.75^{*} 1.67^{*} 12\right) / 0.30=50.68$

SLRgov=50.68
Fy=50.00 ksi;
Area=0.72 in^2;Comp=9.81 kips; fa=Comp/Area=13.67 ksi
Fcr=40.13 ksi; Fa=0.6Fcr= 24.08 ksi
IRc=fa/Fa=13.668/24.077=0.570
Comp. Status: 0.57 <= 1.00 <<-- OK

CHECK TENSION (Eq. 4.2-2)

$\mathrm{ft}=$ Tens \times factor/Area $=(4.219 \times 1.000) / 0.718=5.875 \mathrm{ksi}$
$\mathrm{Ft}=0.6(\mathrm{Fy})=0.6^{*} 50.000=30.000 \mathrm{ksi}$
Ratio $=\mathrm{ft} / \mathrm{Ft}=5.88 / 30.00=0.20$
Status: $0.20<1.00$ <<-- OK
CHECK COMBINED AXIAL AND BENDING STRESSES
AT THE CENTER PANEL
Mpp=1.061 in-K; Mpnl=0.531 in-K; btc=1.50 in.; Ytc=0.42 in. Ixtc=0.16 in^4 fbu_pp $=7.34 \mathrm{ksi} . ;$ fbu_pnl $=1.43 \mathrm{ksi}$. fa=fau=fc=13.67; Atc=0.72 in^2 $\mathrm{Cm}=1-0.67^{*} \mathrm{fau} /$ Phi*F'e
Check Top Chord Center Panel for Combined Axial and Bending ASD SJI Eqs 4.4-9 \& 4.4-10
Fex=276.39 ksi; Fe_tc=111.45 ksi
$\mathrm{fa} /($ Fa_rc $)=0.568 ; \mathrm{Cm}=1-0.67(\mathrm{fau} / \mathrm{Fex})=0.967$
|Rtc_pnl=0.59
Status: $0.59<1.0 \ll--$ OK
AT THE PANEL POINT
IRtc_pnl=0.700
Status: $0.70<1.0 \ll--$ OK

CHECK SHEAR CAPACITY OF CHORD (Ref. SJI Spec. 4.4)

(Panel Point=Node=Joint).
Angle $\mathrm{b}=1.50 \mathrm{in}$, Angle $\mathrm{t}=0.13$ in
OmegaW $=1.500 ; \mathrm{fn}=30.000 ; \mathrm{fn} \times$ OmegaW $=45.000$,Force $(\mathrm{P})=8.341$, $\mathrm{b}=1.500 \mathrm{in} ; \mathrm{t}=0.125 \mathrm{in} ; \mathrm{ft}=\mathrm{P} / \mathrm{A}=11.617$
Evaluation Node \#11; Shear(V) $=2.536 ; f v=V /\left(b t^{*} 2^{*} t\right)=6.764 ;$ fvmod $=8.916$ fvmod=(1/2)*(ft^2+4fv^2)^1/2=8.916 <= fn/OmegaW OK
Evaluation Node \#12; Shear(V) = 3.343; fv=V/(bt*2)=8.914; fvmod=10.640 fvmod=(1/2)*(ft^2+4fv^2)^1/2=10.640 <= fn/OmegaW OK

DESIGN MEMBER

INPUT FORM (ASD) Revision SJI 100-2020

Member Number = 12
Serial $=\mathrm{K}$
Member name = Top chord Right second end panel (Lep2)
Type = 2Angles(\#2)(1)
Section = ㄱ г
Designation = L1 1/2x1 1/2x1/8 (LLV); A = 0.718^2; Fy=50 ksi
Reinforcement = NA;
Span design = 260.00 in
Lenght Member $=2^{\prime}-0{ }^{\prime \prime}=2.000 \mathrm{ft}$ = 24.00 in .
End Panel Lenghtg (Lip) $=24$ in
Braced Top Chord (Metal Panel) Ly $=36$ in
Tension \& Compression Factor Design $=1.000$
Max. Code Check Ratio $=1.00$
Ω (Omega) $=1.67=1 / 1.67=0.6$; Spec. Section 4.2.3 Eq. 4.2
Omega Welding $=2.00$ Ref. SJI Spec 4.2.3.4
Min. Thicknees Material $=1 / 8^{\prime \prime}=0.125 \mathrm{in}$.
Weld Size(tw) $=1 / 8^{\prime \prime}=0.125 \mathrm{in} .=2.000$
EFFECTIVE SLENDERNESS RATIOS TABLE 4.3-1
Maximun Slenderness Ratio (all = allowable)
Slenderness Ratio not excced 120

Data Member

Yield Stress: Fy=50 ksi
Modulus of Elasticity: E=29000 ksi
Area $=0.718$ in $\wedge 2 ; \mathrm{k}=0.318$ inches
Inertia $x=0.156$ in $^{\wedge} 4, \mathrm{ly}=0.479 \mathrm{in}^{\wedge} 4$
$r x=0.47 \mathrm{in} ; r y=0.82 \mathrm{in} ; \mathrm{y}=0.421 \mathrm{in}$
$\mathrm{Sx}=0.145 \mathrm{in}^{\wedge} 3$
$r z=0.296 \mathrm{in} ;$ Qs $=0.961$
Spacing between chord angles $=0.500$ in $=1 / 2^{\prime \prime}$
Combination; [SW=Self Weight; F=Factor]
COMB1 $=1.00 x D L+1.00 x L L+[S W$ F=1.00]
COMB2 $=$ Not Active or Null this Combination
COMB3 $=1.00 x L L+[S W$ F=1.00]
COMB4 $=0.60 x D L+1.00 x \mathrm{UP}+[S W$ F=0.60]

Summary Combination Maximun Results

COMB	T. FORCE	C. FORCE	SHEAR	MOM(Mi)	MOM(Me)
Kips	Kips	Kips	K-in	K-in	
COMB1	0.000	6.399	0.244	1.242	1.681
COMB2	0.000	0.000	0.000	1.242	0.000
COMB3	0.000	5.312	0.202	0.000	0.000
COMB4	2.802	0.000	0.128	0.000	0.000

Max. Local Shear $(\mathrm{V})=0.243579$ Kips; Location in COMB1
Max. Moment $(\mathrm{Me})=0.140047$ K-ft; Location in COMB1
Max. Moment (Mi) $=0.103532$ K-ft; Location in COMB1
Max. Tension = 2.802 Kips; Location in COMB4
Max. Compresion $=6.399$ Kips; Location in COMB1
Original COMPRESION = YES (Use for internal information only)

Location of Reaction of Force

Max. Reation (Comb. \#4)= -1.894 Kips-Use in web member w/Tension
Max. Reation (Comb. \#1) $=4.207$ Kips-Use in web member w/Compr.

Slenderness Ratio

k For Calculation Fcr per Table 4.3-1
(Comp.) Kx=0.00; Ky=0.00; Kz=1.00

Max. Axial Force Top \& Bottom Chord Local

Max. Compr (top chord) force $=15.790$ Kips in Member \#7; Comb1 Max. Tension (top chord) force $=6.361$ Kips in Member \#7; Comb4 Max. Compr (Bottom chord) force $=6.363$ Kips in Member \#20; Comb4
Max. Tension (Bottom chord) force $=15.790$ Kips in Member \#20; Comb1

CHECK SLENDERNESS RATIOS

Assume there are no fillers at the midpanel of top chorrd center panel.
S.R. $x=\left(L x^{*} 12\right) / r x=\left(2.000^{*} 12\right) / 0.466=51.489$
S.R. $y=\left(L y^{*} 12\right) / r y=\left(3.000^{*} 12\right) / 0.817=44.063$
S.R. $z=\left(L z^{*} 12\right) / r z=\left(2.000^{*} 12\right) / 0.296=81.081$

SLRtc $=$ Control $=81.081$
Comp. Ratio $=$ Control $/ 120=81.1 / 120=0.676$
Comp. Status: 0.68 < 1.00 <<-- OK
Tens. Ratio $=$ Control $/ 240=81.08 / 240=0.34$
Tens. Status: $0.34<1.00 \ll-$ OK
CHECK LATERAL STABILITY DURING ERECTION
Eq 5.5-2a; Eq 5.5-2b (Lenght bridging=Lbry=8.17)
L=22.00; dj=18.00; ry=0.817
Lbridging1 $\{$ EQ104.5-1a $=112.723 ;$ Lbridging2\{EQ104.5-2 $\}=138.893$
Lbrdg_gov = $112.72 \mathrm{in} ;$ Lbrdg_spcg $=98.00$ in
Control Ratio = (Lbrdg_spacg/Lbrdg_gov)=98.00/112.72=0.87
Status: 0.87 < 1.00 <<-- OK

CHECK COMPRESSION (4.2-4)

Shim, fillers or ties: NOT
S.R. $z=\left(k z^{*} L^{*} 12\right) / r z=\left(1.00^{*} 2.00^{*} 12\right) / 0.30=81.08$

SLRgov=81.08
Fy=50.00 ksi;
Area=0.72 in^2;Comp=6.40 kips; fa=Comp/Area=8.91 ksi
Fcr=30.28 ksi; Fa=0.6Fcr= 18.17 ksi
IRc=fa/Fa=8.912/18.168=0.490
Comp. Status: 0.49 <= 1.00 <<-- OK

CHECK TENSION (Eq. 4.2-2)

$\mathrm{ft}=$ Tens \times factor/Area $=(2.802 \times 1.000) / 0.718=3.903 \mathrm{ksi}$
$\mathrm{Ft}=0.6(\mathrm{Fy})=0.6 * 50.000=30.000 \mathrm{ksi}$
Ratio $=\mathrm{ft} / \mathrm{Ft}=3.90 / 30.00=0.13$
Status: 0.13 < 1.00 <<-- OK

CHECK COMBINED AXIAL AND BENDING STRESSES

End Panel

Mpp=1.681 in-K; Mpnl=1.242 in-K; btc=1.50 in.; Ytc=0.42 in. Ixtc=0.16 in^4
fbu_pp=11.624;Cm_ep=0.974; fa=fau=fc=8.91; Atc=0.72 in^2
Cm=1-0.5*fa/F'e
Check Top Chord Center Panel for Combined Axial and Bending ASD
SJI Eqs 4.4-9 \& 4.4-10
Kx=1.00
Fex=107.96 ksi; Fe_tc=43.54 ksi
$\mathrm{fa} /($ Fa_rc) $=0.491 ; \mathrm{Cm}=1-0.5$ (fau/Fex) $=0.977$
|Rtc_pnl=0.580
Status: $0.580<0.9 \ll--$ OK
AT THE PANEL POINT (SJI Eq. 4.4)
IRtc_pp=0.685
Status: 0.685 < 0.9 <<-- OK

CHECK SHEAR CAPACITY OF CHORD (Ref. SJI Spec. 4.4)

(Panel Point=Node=Joint).
Angle $\mathrm{b}=1.50$ in, Angle $\mathrm{t}=0.13$ in
OmegaW $=1.500 ; \mathrm{fn}=30.000 ; \mathrm{fn} \times$ OmegaW $=45.000$,Force $(\mathrm{P})=5.439$, $\mathrm{b}=1.500 \mathrm{in} ; \mathrm{t}=0.125 \mathrm{in} ; \mathrm{ft}=\mathrm{P} / \mathrm{A}=7.575$
Evaluation Node \#12; Shear(V) $=3.343 ; \mathrm{fv}=\mathrm{V} /\left(\mathrm{bt}{ }^{*} 2^{* t}\right)=8.914 ;$ fvmod=9.685
fvmod=(1/2)*(ft^2+4fv^2)^1/2=9.685 <= fn/OmegaW OK
Evaluation Node \#13; Shear(V) $=0.617 ; \mathrm{fv}=\mathrm{V} /(\mathrm{bt} * 2)=1.646 ; \mathfrak{f v m o d}=4.130$
fvmod=(1/2)*(ft^2+4fv^2)^1/2=4.130<=fn/OmegaW OK

DESIGN MEMBER

INPUT FORM (ASD) Revision SJI 100-2020

Member Number = 13
Serial $=\mathrm{K}$
Member name = Top chord right first end panel (Lep1)
Type = 2Angles(\#2)(1)
Section = ㄱ г
Designation = L1 1/2x1 1/2x1/8 (LLV); A = 0.718^2; Fy=50 ksi
Reinforcement = NA;
Span design = 260.00 in
Lenght Member = $1^{\prime}-4$ " $=1.333 \mathrm{ft}$. $=16.00 \mathrm{in}$.
End Panel Lenghtg (Lip) $=16$ in
Braced Top Chord (Metal Panel) Ly $=36$ in
Tension \& Compression Factor Design $=1.000$
Max. Code Check Ratio $=1.00$
Ω (Omega) $=1.67=1 / 1.67=0.6$; Spec. Section 4.2.3 Eq. 4.2
Omega Welding $=2.00$ Ref. SJI Spec 4.2.3.4
Min. Thicknees Material $=1 / 8^{\prime \prime}=0.125 \mathrm{in}$.
Weld Size(tw) $=1 / 8^{\prime \prime}=0.125 \mathrm{in} .=2.000$
EFFECTIVE SLENDERNESS RATIOS TABLE 4.3-1
Maximun Slenderness Ratio (all = allowable)
Slenderness Ratio not excced 120

Data Member

Yield Stress: Fy=50 ksi
Modulus of Elasticity: E=29000 ksi
Area $=0.718$ in $\wedge 2 ; \mathrm{k}=0.318$ inches
Inertia $\mathrm{x}=0.156 \mathrm{in}^{\wedge} 4, \mathrm{ly}=0.479 \mathrm{in}^{\wedge} 4$
$r x=0.47 \mathrm{in} ; r y=0.82 \mathrm{in} ; \mathrm{y}=0.421 \mathrm{in}$
$\mathrm{Sx}=0.145 \mathrm{in}^{\wedge} 3$
$r z=0.296 \mathrm{in} ;$ Qs $=0.961$
Spacing between chord angles $=0.500$ in $=1 / 2^{\prime \prime}$
Combination; [SW=Self Weight; F=Factor]
COMB1 $=1.00 x D L+1.00 x L L+[S W$ F=1.00]
COMB2 $=$ Not Active or Null this Combination
COMB3 $=1.00 x L L+[S W$ F=1.00]
COMB4 $=0.60 x D L+1.00 x \mathrm{UP}+[S W$ F=0.60]

Summary Combination Maximun Results

COMB	T. FORCE	C. FORCE	SHEAR	MOM(Mi)	MOM(Me)
Kips	Kips	Kips	K-in	K-in	
COMB1	0.000	6.879	0.129	0.528	1.141
COMB2	0.000	0.000	0.000	0.528	0.000
COMB3	0.000	5.710	0.107	0.528	1.141
COMB4	3.070	0.000	0.075	0.528	1.141

Max. Local Shear $(\mathrm{V})=0.128767$ Kips; Location in COMB1
Max. Moment $(\mathrm{Me})=0.095092$ K-ft; Location in COMB1
Max. Moment (Mi) $=0.044000$ K-ft; Location in COMB1
Max. Tension = 3.070 Kips; Location in COMB4
Max. Compresion $=6.879$ Kips; Location in COMB1
Original COMPRESION = YES (Use for internal information only)

Location of Reaction of Force

Max. Reation (Comb. \#4)= -1.894 Kips-Use in web member w/Tension
Max. Reation (Comb. \#1) $=4.207$ Kips-Use in web member w/Compr.

Slenderness Ratio

k For Calculation Fcr per Table 4.3-1
(Comp.) Kx=0.00; Ky=0.00; Kz=1.00

Max. Axial Force Top \& Bottom Chord Local

Max. Compr (top chord) force $=15.790$ Kips in Member \#7; Comb1 Max. Tension (top chord) force $=6.361$ Kips in Member \#7; Comb4 Max. Compr (Bottom chord) force $=6.363$ Kips in Member \#20; Comb4
Max. Tension (Bottom chord) force $=15.790$ Kips in Member \#20; Comb1

CHECK SLENDERNESS RATIOS

Assume there are no fillers at the midpanel of top chorrd center panel.
S.R. $x=\left(L x^{*} 12\right) / r x=\left(1.333^{*} 12\right) / 0.466=34.326$
S.R. $y=\left(L y^{*} 12\right) / r y=\left(3.000^{*} 12\right) / 0.817=44.063$
S.R. $z=\left(L z^{*} 12\right) / r z=\left(1.333^{*} 12\right) / 0.296=54.054$

SLRtc $=$ Control $=54.054$
Comp. Ratio $=$ Control $/ 120=54.1 / 120=0.450$
Comp. Status: $0.45<1.00 \ll--$ OK
Tens. Ratio $=$ Control $/ 240=54.05 / 240=0.23$
Tens. Status: $0.23<1.00 \ll-$ OK
CHECK LATERAL STABILITY DURING ERECTION
Eq 5.5-2a; Eq 5.5-2b (Lenght bridging=Lbry=8.17)
L=22.00; dj=18.00; ry=0.817
Lbridging1 $\{$ EQ104.5-1a $=112.723 ;$ Lbridging2\{EQ104.5-2 $\}=138.893$
Lbrdg_gov = $112.72 \mathrm{in} ;$ Lbrdg_spcg $=98.00$ in
Control Ratio = (Lbrdg_spacg/Lbrdg_gov)=98.00/112.72=0.87
Status: 0.87 < 1.00 <<-- OK
CHECK COMPRESSION (4.2-4)
Shim, fillers or ties: NOT
S.R. $z=\left(k z^{*} L^{*} 12\right) / r z=\left(1.00^{*} 1.33^{*} 12\right) / 0.30=54.05$

SLRgov=54.05
Fy=50.00 ksi;
Area=0.72 in^2;Comp=6.88 kips; fa=Comp/Area=9.58 ksi
Fcr=39.14 ksi; Fa=0.6Fcr= 23.49 ksi
IRc=fa/Fa=9.581/23.485=0.410
Comp. Status: 0.41 <= 1.00 <<-- OK

CHECK TENSION (Eq. 4.2-2)

$\mathrm{ft}=$ Tens \times factor/Area $=(3.070 \times 1.000) / 0.718=4.276 \mathrm{ksi}$
$\mathrm{Ft}=0.6(\mathrm{Fy})=0.6 * 50.000=30.000 \mathrm{ksi}$
Ratio $=\mathrm{ft} / \mathrm{Ft}=4.28 / 30.00=0.14$
Status: 0.14 < 1.00 <<-- OK

CHECK COMBINED AXIAL AND BENDING STRESSES

End Panel

Mpp=1.141 in-K; Mpnl=0.528 in-K; btc=1.50 in.; Ytc=0.42 in. Ixtc=0.16 in^4
fbu_pp=7.893;Cm_ep=0.988; fa=fau=fc=9.58; Atc=0.72 in^2
$\mathrm{Cm}=1-0.5^{*} \mathrm{fa} / \mathrm{F}^{\prime} \mathrm{e}$
Check Top Chord Center Panel for Combined Axial and Bending ASD
SJI Eqs 4.4-9 \& 4.4-10
Kx=1.00
Fex=242.90 ksi; Fe_tc=97.96 ksi
fa/(Fa_rc) $=0.408$; Cm=1-0.5(fau/Fex) $=0.989$
IRtc_pnl=0.467
Status: $0.467<0.9 \ll--$ OK
AT THE PANEL POINT (SJI Eq. 4.4)
IRtc_pp=0.582
Status: 0.582 < 0.9 <<-- OK

CHECK SHEAR CAPACITY OF CHORD (Ref. SJI Spec. 4.4)

(Panel Point=Node=Joint).
Angle $\mathrm{b}=1.50$ in, Angle $\mathrm{t}=0.13$ in
OmegaW $=1.500 ; \mathrm{fn}=30.000 ; \mathrm{fn} \times$ OmegaW=45.000,Force(P)=5.847, $\mathrm{b}=1.500 \mathrm{in} ; \mathrm{t}=0.125 \mathrm{in} ; \mathrm{tt}=\mathrm{P} / \mathrm{A}=8.144$
Evaluation Node \#13; Shear(V) $=0.617 ; \mathrm{fv}=\mathrm{V} /\left(\mathrm{bt}{ }^{*} 2^{*} \mathrm{t}\right)=1.646 ;$ fvmod=4.392
fvmod=(1/2)*(ft^2+4fv^2)^1/2=4.392 <= fn/OmegaW OK
Evaluation Node \#14; Shear(V) = 3.949; fv=V/(bt*2)=10.530; fvmod=11.289
fvmod $=(1 / 2)^{*}\left(\mathrm{ft}^{\wedge} 2+4 f v^{\wedge} 2\right)^{\wedge} 1 / 2=11.289<=\mathrm{fn} /$ OmegaW OK

DESIGN MEMBER

INPUT FORM (ASD) Revision SJI 100-2020
Member Number = 14
Serial $=\mathrm{K}$
Member name = Bottom chord left ext.
Type $=2$ Angle(1)
Section = $\lrcorner\llcorner$
Designation $=L 11 / 4 \times 1$ 1/4x1/8 (SLV); $A=0.594^{\wedge} 2 ; F y=50 \mathrm{ksi}$
Reinforcement = NA;
Span design $=260.00$ in
Lenght Member $=4^{\prime \prime}=0.333 \mathrm{ft} .=4.00 \mathrm{in}$.
Tension \& Compression Factor Design $=1.000$
Max. Code Check Ratio = 1.00
Ω (Omega) $=1.67=1 / 1.67=0.6$; Spec. Section 4.2.3 Eq. 4.2
Omega Welding $=2.00$ Ref. SJI Spec 4.2.3.4
Min. Thicknees Material $=1 / 8^{\prime \prime}=0.125 \mathrm{in}$.
Weld Size(tw) $=1 / 8^{\prime \prime}=0.125 \mathrm{in} .=2.000$
Spc's of Bridging Lbry = 5.667 ft . (Bottom Bridging)
EFFECTIVE SLENDERNESS RATIOS TABLE 4.3-1
Maximun Slenderness Ratio (all = allowable)
Slenderness Ratio not excced $=240$

Data Member

Yield Stress: Fy=50 ksi
Modulus of Elasticity: E=29000 ksi
Area $=0.594$ in^2; $k=0.318$ inches
Inertia $x=0.088$ in $^{\wedge} 4, \mid y=0.308$ in $^{\wedge} 4$
$r x=0.38 \mathrm{in} ; r y=0.72 \mathrm{in} ; y=0.359 \mathrm{in}$
$\mathrm{Sx}=0.099 \mathrm{in} \wedge 3$
$r z=0.246 \mathrm{in} ; \mathrm{Qs}=1.000$
Spacing between chord angles $=0.500 \mathrm{in}=1 / 2^{\prime \prime}$
Combination; [SW=Self Weight; F=Factor]
COMB1 $=1.00 \times D L+1.00 \times L L+[S W$ F=1.00]
COMB2 $=$ Not Active or Null this Combination
COMB3 $=1.00 x L L+[S W$ F=1.00]
COMB4 $=0.60 x D L+1.00 x \mathrm{UP}+[\mathrm{SW}$ F=0.60]
Summary Combination Maximun Results

COMB	T. FORCE	C. FORCE	SHEAR	MOM(Mi)	MOM(Me)
	Kips	Kips	Kips	K-in	K-in
COMB1	0.000	0.000	0.001	0.001	0.000
COMB2	0.000	0.000	0.000	0.001	0.000
COMB3	0.000	0.000	0.001	0.001	0.000
COMB4	0.000	0.000	0.000	0.001	0.000

Max. Local Shear $(\mathrm{V})=0.000507$ Kips; Location in COMB3
Max. Moment $(\mathrm{Me})=0.000000$ K-ft; Location in COMB4
Max. Moment (Mi) $=0.000113$ K-ft; Location in COMB3
Max. Tension $=0.000$ Kips; Location in COMB4
Max. Compresion $=0.000$ Kips; Location in COMB4
Original COMPRESION = NOT (Use for internal information only)
Max. Axial Force Top \& Bottom Chord Local
Max. Compr (top chord) force = 15.790 Kips in Member \#7; Comb1 Max. Tension (top chord) force = 6.361 Kips in Member \#7; Comb4 Max. Compr (Bottom chord) force $=6.363$ Kips in Member \#20; Comb4 Max. Tension (Bottom chord) force $=15.790$ Kips in Member \#20; Comb1
S.R. $x=\left(L^{*} 12\right) / r x=\left(0.333^{*} 12\right) / 0.385=10.392$
S.R. $z=\left(L z^{*} 12\right) / r z=\left(0.333^{*} 12\right) / 0.246=16.260$

SLRbc = Control $=94.387$

CHECK SHEAR CAPACITY OF CHORD (Ref. SJI Spec. 4.4)
 (Panel Point=Node=Joint).

Angle $\mathrm{b}=1.25 \mathrm{in}$, Angle $\mathrm{t}=0.13$ in
OmegaW=1.500;fn=30.000;fn x OmegaW=20.000,Force $(P)=0.000 \mathrm{kips}$ $\mathrm{b}=1.250 \mathrm{in} ; \mathrm{t}=0.125 \mathrm{in} ; \mathrm{ft}=\mathrm{P} / \mathrm{A}=0.000 \mathrm{ksi}$
Evaluation Node \#16; Shear $(V)=3.949 ; f v=V /\left(b t^{*} 2\right)=12.635 ; f v m o d=12.635$
fvmod=(1/2)*(ft^2+4fv^2)^1/2=12.635 <= fn/OmegaW OK

CHECK MODULAR SECTION (S) Verification

Using Max. Moment
$\mathrm{S}=(\mathrm{M}) / \mathrm{Fb}=(0.001) / 30.000=0.000 \mathrm{in}$ ^3
$S=0.000$ in^3; Sx= 0.099 in^3
Ratio $=S / S x=0.000 / 0.099=0.000$
Status: $0.00<1.00 \ll-$ OK

DESIGN MEMBER

INPUT FORM (ASD) Revision SJI 100-2020

Member Number = 15
Serial $=\mathrm{K}$
Member name = Bottom chord interior panel
Type $=$ 2Angle(1)
Section = $\lrcorner\llcorner$
Designation = L1 1/4×1 1/4x1/8 (SLV); A = 0.594^2; Fy=50 ksi
Reinforcement = NA;
Span design = 260.00 in
Lenght Member $=1^{\prime}-8$ " $=1.667 \mathrm{ft}$. $=20.00 \mathrm{in}$.
Tension \& Compression Factor Design $=1.000$
Max. Code Check Ratio $=1.00$
Ω (Omega) $=1.67=1 / 1.67=0.6$; Spec. Section 4.2.3 Eq. 4.2
Omega Welding $=2.00$ Ref. SJI Spec 4.2.3.4
Min. Thicknees Material $=1 / 8^{\prime \prime}=0.125 \mathrm{in}$.
Weld Size(tw) $=1 / 8^{\prime \prime}=0.125 \mathrm{in} .=2.000$
Spc's of Bridging Lbry = 5.667 ft . (Bottom Bridging)

EFFECTIVE SLENDERNESS RATIOS TABLE 4.3-1

Maximun Slenderness Ratio (all = allowable)
For Compression member Slenderness Ratio not excced $=200$
For Tension member Slenderness Ratio not excced 240

Data Member

Yield Stress: Fy=50 ksi
Modulus of Elasticity: E=29000 ksi
Area $=0.594$ in $^{\wedge} 2 ; \mathrm{k}=0.318$ inches
Inertia $x=0.088$ in^4, $\mathrm{ly}=0.308$ in $^{\wedge} 4$
$r x=0.38 \mathrm{in} ; r y=0.72 \mathrm{in} ; y=0.359 \mathrm{in}$
$\mathrm{Sx}=0.099 \mathrm{in}^{\wedge} 3$
$\mathrm{rz}=0.246 \mathrm{in} ; \mathrm{Qs}=1.000$
Spacing between chord angles $=0.500$ in $=1 / 2^{\prime \prime}$
Combination; [SW=Self Weight; F=Factor]
COMB1 $=1.00 x D L+1.00 x L L+[S W$ F=1.00]
COMB2 $=$ Not Active or Null this Combination
COMB3 $=1.00 x L L+[S W$ F=1.00]
COMB4 $=0.60 x D L+1.00 x \mathrm{UP}+[S W$ F=0.60]

Summary Combination Maximun Results

COMB	T. FORCE	C. FORCE	SHEAR	MOM(Mi)	MOM(Me) Kips
Kips	Kips	K-in	K-in		
COMB1	8.340	0.000	0.009	0.001	0.000
COMB2	0.000	0.000	0.000	0.001	0.000
COMB3	6.923	0.000	0.007	0.001	0.131
COMB4	0.000	3.634	0.004	0.079	0.000

Max. Local Shear $(\mathrm{V})=0.008865$ Kips; Location in COMB1
Max. Moment $(\mathrm{Me})=0.010934$ K-ft; Location in COMB1
Max. Moment (Mi) $=0.006558$ K-ft; Location in COMB4
Max. Tension = 8.340 Kips; Location in COMB1
Max. Compresion = 3.634 Kips; Location in COMB4
Original COMPRESION = YES (Use for internal information only)

Location of Reaction of Force

Max. Reation (Comb. \#4)= -1.894 Kips-Use in web member w/Tension
Max. Reation (Comb. \#1) $=4.207$ Kips-Use in web member w/Compr.

Slenderness Ratio

k For Calculation Fcr per Table 4.3-1
(Comp.) Kx=0.00; Ky=0.00; Kz=0.90

Max. Axial Force Top \& Bottom Chord Local

Max. Compr (top chord) force $=15.790$ Kips in Member \#7; Comb1 Max. Tension (top chord) force $=6.361$ Kips in Member \#7; Comb4
Max. Compr (Bottom chord) force $=6.363$ Kips in Member \#20; Comb4
Max. Tension (Bottom chord) force $=15.790$ Kips in Member \#20; Comb1

CHECK SLENDERNESS RATIOS

S.R. $x=\left(L^{*} 12\right) / r x=\left(1.667^{*} 12\right) / 0.385=51.962$
S.R. $y=\left(L^{*} 12\right) / r y=\left(5.667^{*} 12\right) / 0.720=94.387$
S.R. $z=\left(L z^{*} 12\right) / r z=\left(1.667^{*} 12\right) / 0.246=81.301$

SLRbc = Control = 94.387
Comp. Ratio $=$ Control $/ 200=94.4 / 200=0.472$
Comp. Status: $0.47<1.00 \ll--$ OK
Tens. Ratio $=$ Control $/ 240=94.39 / 240=0.39$
Tens. Status: $0.39<1.00 \ll-$ OK

CHECK COMPRESSION (4.2-4)

Shim, fillers or ties: NOT
S.R. $z=\left(k z^{*} L^{*} 12\right) / r z=\left(0.900^{*} 1.67^{*} 12\right) / 0.246=73.171$

SLRgov=73.17
Fy=50.00 ksi;
Area=0.59 in^2;Comp=3.63 kips; fa=Comp/Area=6.12 ksi
Fe_bc=53.46 ksi; Fcr_bc=33.80 ksi
Fcr=33.80 ksi; Fa=0.6Fcr= 20.28 ksi
IRc=fa/Fa=6.118/20.282=0.300
Comp. Status: $0.30<=1.00 \ll-$ OK
CHECK TENSION (Eq. 4.2-2)
$\mathrm{ft}=$ Tens \times factor/Area $=(8.340 \times 1.000) / 0.594=14.040 \mathrm{ksi}$
$\mathrm{Ft}=0.6(\mathrm{Fy})=0.6 * 50.000=30.000 \mathrm{ksi}$
Ratio $=\mathrm{ft} / \mathrm{Ft}=14.04 / 30.00=0.47$
Status: 0.47 < 1.00 <<-- OK
CHECK COMBINED AXIAL AND BENDING STRESSES
AT THE CENTER PANEL
Mpp=0.131 in-K; Mpnl=0.079 in-K; bbc=1.25 in.; Ybc=0.36 in. Ixtc=0.09 in^4 fbu_pp $=1.33 \mathrm{ksi} . ;$ fbu_pnl $=0.32 \mathrm{ksi}$. fa=fau=fc=6.12; Abc=0.59 in^2
Check Top Chord Center Panel for Combined Axial and Bending ASD
SJI Eqs 4.4-9 \& 4.4-10
$\mathrm{fa} /\left(\mathrm{Fa} _\right.$rc) $=0.302 ; \mathrm{Cm}=1-0.67(\mathrm{fa} / \mathrm{Fex})=0.978$
|Rbc_pnl=0.31
Status: $0.31<1.0 \ll-$ OK
AT THE PANEL POINT
IRbc_pnl=0.248
Status: 0.25 < 1.0 <<-- OK

CHECK SHEAR CAPACITY OF CHORD (Ref. SJI Spec. 4.4)
 (Panel Point=Node=Joint).

Angle $\mathrm{b}=1.25$ in, Angle $\mathrm{t}=0.13$ in
OmegaW=1.500;fn=30.000;fn \times OmegaW=20.000,Force(P)=7.089 kips $\mathrm{b}=1.250 \mathrm{in} ; \mathrm{t}=0.125 \mathrm{in} ; \mathrm{ft}=\mathrm{P} / \mathrm{A}=11.934 \mathrm{ksi}$
Evaluation Node \#16; Shear $(\mathrm{V})=3.949 ; f v=\mathrm{V} /\left(\mathrm{bt}^{*} 2^{*} \mathrm{t}\right)=12.635$; fvmod=13.974
fvmod=(1/2)*(ft^2+4fv^2)^1/2=13.974 <= fn/OmegaW OK
Evaluation Node \#17; Shear(V) $=2.537 ; f v=V /(b t * 2)=8.118 ; f v m o d=10.075$
fvmod $=(1 / 2)^{\star}\left(\mathrm{ft}^{\wedge} 2+4 \mathrm{fv} \wedge 2\right)^{\wedge} 1 / 2=10.075<=\mathrm{fn} /$ OmegaW OK

DESIGN MEMBER

INPUT FORM (ASD) Revision SJI 100-2020

Member Number = 16
Serial $=\mathrm{K}$
Member name = Bottom chord interior panel
Type $=$ 2Angle(1)
Section = $\lrcorner\llcorner$
Designation = L1 1/4×1 1/4x1/8 (SLV); A = 0.594^2; Fy=50 ksi
Reinforcement = NA;
Span design = 260.00 in
Lenght Member $=1^{\prime}-8$ " $=1.667 \mathrm{ft}$. $=20.00 \mathrm{in}$.
Tension \& Compression Factor Design $=1.000$
Max. Code Check Ratio $=1.00$
Ω (Omega) $=1.67=1 / 1.67=0.6$; Spec. Section 4.2.3 Eq. 4.2
Omega Welding $=2.00$ Ref. SJI Spec 4.2.3.4
Min. Thicknees Material $=1 / 8^{\prime \prime}=0.125 \mathrm{in}$.
Weld Size(tw) $=1 / 8^{\prime \prime}=0.125 \mathrm{in} .=2.000$
Spc's of Bridging Lbry = 5.667 ft . (Bottom Bridging)

EFFECTIVE SLENDERNESS RATIOS TABLE 4.3-1

Maximun Slenderness Ratio (all = allowable)
For Compression member Slenderness Ratio not excced $=200$
For Tension member Slenderness Ratio not excced 240

Data Member

Yield Stress: Fy=50 ksi
Modulus of Elasticity: E=29000 ksi
Area $=0.594$ in $^{\wedge} 2 ; \mathrm{k}=0.318$ inches
Inertia $x=0.088$ in^4, $\mathrm{ly}=0.308$ in $^{\wedge} 4$
$r x=0.38 \mathrm{in} ; r y=0.72 \mathrm{in} ; y=0.359 \mathrm{in}$
$\mathrm{Sx}=0.099 \mathrm{in}^{\wedge} 3$
$\mathrm{rz}=0.246 \mathrm{in} ; \mathrm{Qs}=1.000$
Spacing between chord angles $=0.500$ in $=1 / 2^{\prime \prime}$
Combination; [SW=Self Weight; F=Factor]
COMB1 $=1.00 x D L+1.00 x L L+[S W$ F=1.00]
COMB2 $=$ Not Active or Null this Combination
COMB3 $=1.00 x L L+[S W$ F=1.00]
COMB4 $=0.60 x D L+1.00 x \mathrm{UP}+[S W$ F=0.60]

Summary Combination Maximun Results

COMB	T. FORCE	C. FORCE	SHEAR	MOM(Mi)	MOM(Me)
Kips	Kips	Kips	K-in	K-in	
COMB1	11.286	0.000	0.004	0.000	0.000
COMB2	0.000	0.000	0.000	0.000	0.000
COMB3	9.369	0.000	0.003	0.000	0.182
COMB4	0.000	4.806	0.001	0.097	0.000

Max. Local Shear $(\mathrm{V})=0.003868$ Kips; Location in COMB1
Max. Moment $(\mathrm{Me})=0.015131$ K-ft; Location in COMB1
Max. Moment (Mi) $=0.008093$ K-ft; Location in COMB4
Max. Tension = 11.286 Kips; Location in COMB1
Max. Compresion $=4.806$ Kips; Location in COMB4
Original COMPRESION = YES (Use for internal information only)

Location of Reaction of Force

Max. Reation (Comb. \#4) $=-1.894$ Kips-Use in web member w/Tension
Max. Reation (Comb. \#1) $=4.207$ Kips-Use in web member w/Compr.

Slenderness Ratio

k For Calculation Fcr per Table 4.3-1
(Comp.) Kx=0.00; Ky=0.00; Kz=0.90

Max. Axial Force Top \& Bottom Chord Local

Max. Compr (top chord) force $=15.790$ Kips in Member \#7; Comb1 Max. Tension (top chord) force $=6.361$ Kips in Member \#7; Comb4
Max. Compr (Bottom chord) force $=6.363$ Kips in Member \#20; Comb4
Max. Tension (Bottom chord) force $=15.790$ Kips in Member \#20; Comb1

CHECK SLENDERNESS RATIOS

S.R. $x=\left(L^{*} 12\right) / r x=\left(1.667^{*} 12\right) / 0.385=51.962$
S.R. $y=\left(L^{*} 12\right) / r y=\left(5.667^{*} 12\right) / 0.720=94.387$
S.R. $z=\left(L z^{*} 12\right) / r z=\left(1.667^{*} 12\right) / 0.246=81.301$

SLRbc = Control = 94.387
Comp. Ratio $=$ Control $/ 200=94.4 / 200=0.472$
Comp. Status: $0.47<1.00 \ll--$ OK
Tens. Ratio $=$ Control $/ 240=94.39 / 240=0.39$
Tens. Status: $0.39<1.00 \ll-$ OK

CHECK COMPRESSION (4.2-4)

Shim, fillers or ties: NOT
S.R. $z=\left(k z^{*} L^{*} 12\right) / r z=\left(0.900^{*} 1.67^{*} 12\right) / 0.246=73.171$

SLRgov=73.17
Fy=50.00 ksi;
Area=0.59 in^2;Comp=4.81 kips; fa=Comp/Area=8.09 ksi
Fe_bc=53.46 ksi; Fcr_bc=33.80 ksi
Fcr=33.80 ksi; Fa=0.6Fcr= 20.28 ksi
IRc=fa/Fa=8.092/20.282=0.400
Comp. Status: $0.40<=1.00 \ll-$ OK
CHECK TENSION (Eq. 4.2-2)
$\mathrm{ft}=$ Tens \times factor/Area $=(11.286 \times 1.000) / 0.594=19.000 \mathrm{ksi}$
$\mathrm{Ft}=0.6(\mathrm{Fy})=0.6 * 50.000=30.000 \mathrm{ksi}$
Ratio $=\mathrm{ft} / \mathrm{Ft}=19.00 / 30.00=0.63$
Status: 0.63 < 1.00 <<-- OK
CHECK COMBINED AXIAL AND BENDING STRESSES
AT THE CENTER PANEL
Mpp=0.182 in-K; Mpnl=0.097 in-K; bbc=1.25 in.; Ybc=0.36 in. Ixtc=0.09 in^4
fbu_pp $=1.84 \mathrm{ksi} . ;$ fbu_pnl $=0.40 \mathrm{ksi}$. fa=fau=fc=8.09; Abc=0.59 in^2
Check Top Chord Center Panel for Combined Axial and Bending ASD
SJI Eqs 4.4-9 \& 4.4-10
fa/(Fa_rc) $=0.399 ; \mathrm{Cm}=1-0.67$ (fa/Fex) $=0.971$
|Rbc_pnl=0.41
Status: $0.41<1.0 \ll--$ OK
AT THE PANEL POINT
|Rbc_pnl=0.331
Status: 0.33 < 1.0 <<-- OK

CHECK SHEAR CAPACITY OF CHORD (Ref. SJI Spec. 4.4)
 (Panel Point=Node=Joint).

Angle $\mathrm{b}=1.25$ in, Angle $\mathrm{t}=0.13$ in
OmegaW=1.500;fn=30.000;fn \times OmegaW=20.000,Force(P)=9.593 kips $\mathrm{b}=1.250 \mathrm{in} ; \mathrm{t}=0.125 \mathrm{in} ; \mathrm{ft}=\mathrm{P} / \mathrm{A}=16.150 \mathrm{ksi}$
Evaluation Node \#17; Shear $(\mathrm{V})=2.537 ; \mathrm{fv}=\mathrm{V} /\left(\mathrm{bt}{ }^{*} 2^{*} \mathrm{t}\right)=8.118 ; \mathrm{fvmod}=11.450$
fvmod=(1/2)*(ft^2+4fv^2)^1/2=11.450 <= fn/OmegaW OK
Evaluation Node \#18; Shear(V) $=1.947 ; f v=V /(b t * 2)=6.229 ; ~ f v m o d=10.199$
fvmod $=(1 / 2)^{\star}\left(\mathrm{ft}^{\wedge} 2+4 \mathrm{fv} \wedge 2\right)^{\wedge} 1 / 2=10.199<=$ fn/OmegaW OK

DESIGN MEMBER

INPUT FORM (ASD) Revision SJI 100-2020

Member Number = 17
Serial $=\mathrm{K}$
Member name = Bottom chord interior panel
Type $=$ 2Angle(1)
Section = $\lrcorner\llcorner$
Designation = L1 1/4×1 1/4x1/8 (SLV); A = 0.594^2; Fy=50 ksi
Reinforcement = NA;
Span design = 260.00 in
Lenght Member $=1^{\prime}-8$ " $=1.667 \mathrm{ft}$. $=20.00 \mathrm{in}$.
Tension \& Compression Factor Design $=1.000$
Max. Code Check Ratio $=1.00$
Ω (Omega) $=1.67=1 / 1.67=0.6$; Spec. Section 4.2.3 Eq. 4.2
Omega Welding $=2.00$ Ref. SJI Spec 4.2.3.4
Min. Thicknees Material $=1 / 8^{\prime \prime}=0.125 \mathrm{in}$.
Weld Size(tw) $=1 / 8^{\prime \prime}=0.125 \mathrm{in} .=2.000$
Spc's of Bridging Lbry = 5.667 ft . (Bottom Bridging)

EFFECTIVE SLENDERNESS RATIOS TABLE 4.3-1

Maximun Slenderness Ratio (all = allowable)
For Compression member Slenderness Ratio not excced $=200$
For Tension member Slenderness Ratio not excced 240

Data Member

Yield Stress: Fy=50 ksi
Modulus of Elasticity: E=29000 ksi
Area $=0.594$ in $^{\wedge} 2 ; \mathrm{k}=0.318$ inches
Inertia $x=0.088$ in^4, $\mathrm{ly}=0.308$ in $^{\wedge} 4$
$r x=0.38 \mathrm{in} ; r y=0.72 \mathrm{in} ; y=0.359 \mathrm{in}$
$\mathrm{Sx}=0.099 \mathrm{in}^{\wedge} 3$
$\mathrm{rz}=0.246 \mathrm{in} ; \mathrm{Qs}=1.000$
Spacing between chord angles $=0.500$ in $=1 / 2^{\prime \prime}$
Combination; [SW=Self Weight; F=Factor]
COMB1 $=1.00 x D L+1.00 x L L+[S W$ F=1.00]
COMB2 $=$ Not Active or Null this Combination
COMB3 $=1.00 x L L+[S W$ F=1.00]
COMB4 $=0.60 x D L+1.00 x \mathrm{UP}+[S W$ F=0.60]

Summary Combination Maximun Results

COMB	T. FORCE	C. FORCE	SHEAR	MOM(Mi)	MOM(Me)
	Kips	Kips	Kips	K-in	K-in
COMB1	13.545	0.000	0.002	0.000	0.000
COMB2	0.000	0.000	0.000	0.000	0.000
COMB3	11.244	0.000	0.002	0.000	0.208
COMB4	0.000	5.605	0.001	0.105	0.000

Max. Local Shear $(\mathrm{V})=0.002444$ Kips; Location in COMB1
Max. Moment $(\mathrm{Me})=0.017340$ K-ft; Location in COMB1
Max. Moment (Mi) $=0.008770$ K-ft; Location in COMB4
Max. Tension = 13.545 Kips; Location in COMB1
Max. Compresion $=5.605$ Kips; Location in COMB4
Original COMPRESION = YES (Use for internal information only)

Location of Reaction of Force

Max. Reation (Comb. \#4) $=-1.894$ Kips-Use in web member w/Tension
Max. Reation (Comb. \#1) $=4.207$ Kips-Use in web member w/Compr.

Slenderness Ratio

k For Calculation Fcr per Table 4.3-1
(Comp.) Kx=0.00; Ky=0.00; Kz=0.90

Max. Axial Force Top \& Bottom Chord Local

Max. Compr (top chord) force $=15.790$ Kips in Member \#7; Comb1 Max. Tension (top chord) force $=6.361$ Kips in Member \#7; Comb4 Max. Compr (Bottom chord) force $=6.363$ Kips in Member \#20; Comb4
Max. Tension (Bottom chord) force $=15.790$ Kips in Member \#20; Comb1

CHECK SLENDERNESS RATIOS

S.R. $x=\left(L^{*} 12\right) / r x=\left(1.667^{*} 12\right) / 0.385=51.962$
S.R. $y=\left(L^{*} 12\right) / r y=\left(5.667^{*} 12\right) / 0.720=94.387$
S.R. $z=\left(L z^{*} 12\right) / r z=\left(1.667^{*} 12\right) / 0.246=81.301$

SLRbc = Control $=94.387$
Comp. Ratio $=$ Control $/ 200=94.4 / 200=0.472$
Comp. Status: $0.47<1.00 \ll--$ OK
Tens. Ratio $=$ Control $/ 240=94.39 / 240=0.39$
Tens. Status: $0.39<1.00 \ll-$ OK

CHECK COMPRESSION (4.2-4)

Shim, fillers or ties: NOT
S.R. $z=\left(k z^{*} L^{*} 12\right) / r z=\left(0.900^{*} 1.67^{*} 12\right) / 0.246=73.171$

SLRgov=73.17
Fy=50.00 ksi;
Area=0.59 in^2;Comp=5.61 kips; fa=Comp/Area=9.44 ksi
Fe_bc=53.46 ksi; Fcr_bc=33.80 ksi
Fcr=33.80 ksi; Fa=0.6Fcr= 20.28 ksi
IRc=fa/Fa=9.436/20.282=0.470
Comp. Status: $0.47<=1.00 \ll-$ OK
CHECK TENSION (Eq. 4.2-2)
$\mathrm{ft}=$ Tens \times factor/Area $=(13.545 \times 1.000) / 0.594=22.803 \mathrm{ksi}$
$\mathrm{Ft}=0.6(\mathrm{Fy})=0.6^{*} 50.000=30.000 \mathrm{ksi}$
Ratio $=\mathrm{ft} / \mathrm{Ft}=22.80 / 30.00=0.76$
Status: $0.76<1.00 \ll--$ OK
CHECK COMBINED AXIAL AND BENDING STRESSES
AT THE CENTER PANEL
Mpp=0.208 in-K; Mpnl=0.105 in-K; bbc=1.25 in.; Ybc=0.36 in. Ixtc=0.09 in^4 fbu_pp $=2.11 \mathrm{ksi} . ;$ fbu_pnl $=0.43 \mathrm{ksi} . \mathrm{fa}=\mathrm{fau}=\mathrm{fc}=9.44 ; \mathrm{Abc}=0.59 \mathrm{in}{ }^{\wedge} 2$
Check Top Chord Center Panel for Combined Axial and Bending ASD
SJI Eqs 4.4-9 \& 4.4-10
$\mathrm{fa} /\left(\mathrm{Fa} _\right.$rc) $)=0.465 ; \mathrm{Cm}=1-0.67(\mathrm{fa} / \mathrm{Fex})=0.966$
|Rbc_pnl=0.47
Status: $0.47<1.0 \ll-$ OK
AT THE PANEL POINT
|Rbc_pnl=0.385
Status: $0.38<1.0 \ll-$ OK

CHECK SHEAR CAPACITY OF CHORD (Ref. SJI Spec. 4.4)
 (Panel Point=Node=Joint).

Angle $b=1.25$ in, Angle $t=0.13$ in
OmegaW =1.500;fn=30.000;fn x OmegaW $=20.000$,Force $(P)=11.513$ kips $\mathrm{b}=1.250 \mathrm{in} ; \mathrm{t}=0.125 \mathrm{in} ; \mathrm{ft}=\mathrm{P} / \mathrm{A}=19.382 \mathrm{ksi}$
Evaluation Node \#18; Shear $(\mathrm{V})=1.947 ; \mathrm{fv}=\mathrm{V} /\left(\mathrm{bt}{ }^{*} 2^{*} \mathrm{t}\right)=6.229$; $\mathrm{fvmod}=11.521$
fvmod=(1/2)*(ft^2+4fv^2)^1/2=11.521<= fn/OmegaW OK
Evaluation Node \#19; Shear $(\mathrm{V})=1.292 ; \mathrm{fv}=\mathrm{V} /\left(\mathrm{bt}{ }^{*} 2\right)=4.134 ; \mathrm{fvmod}=10.536$
fvmod $=(1 / 2)^{\star}\left(\mathrm{ft}^{\wedge} 2+4 \mathrm{fv}^{\wedge} 2\right)^{\wedge} 1 / 2=10.536<=\mathrm{fn} /$ OmegaW OK

DESIGN MEMBER

INPUT FORM (ASD) Revision SJI 100-2020
Member Number = 18
Serial $=\mathrm{K}$
Member name = Bottom chord interior panel
Type $=$ 2Angle(1)
Section = $\lrcorner\llcorner$
Designation $=L 11 / 4 \times 1$ 1/4x1/8 (SLV); $A=0.594^{\wedge} 2 ; F y=50 \mathrm{ksi}$
Reinforcement = NA;
Span design $=260.00$ in
Lenght Member $=1^{\prime}-8{ }^{\prime \prime}=1.667 \mathrm{ft} .=20.00 \mathrm{in}$.
Tension \& Compression Factor Design $=1.000$
Max. Code Check Ratio = 1.00
$\Omega($ Omega $)=1.67=1 / 1.67=0.6$; Spec. Section 4.2.3 Eq. 4.2
Omega Welding = 2.00 Ref. SJI Spec 4.2.3.4
Min. Thicknees Material $=1 / 8^{\prime \prime}=0.125$ in.
Weld Size(tw) = 1/8" = 0.125 in. $=2.000$
Spc's of Bridging Lbry $=5.667 \mathrm{ft}$. (Bottom Bridging)

EFFECTIVE SLENDERNESS RATIOS TABLE 4.3-1

Maximun Slenderness Ratio (all = allowable)
For Compression member Slenderness Ratio not excced $=200$
For Tension member Slenderness Ratio not excced 240

Data Member

Yield Stress: Fy=50 ksi
Modulus of Elasticity: E=29000 ksi
Area $=0.594$ in^2 $^{\wedge} ; \mathrm{k}=0.318$ inches
Inertia $x=0.088$ in $^{\wedge} 4$, ly= 0.308 in $^{\wedge} 4$
$r x=0.38 \mathrm{in} ; r y=0.72 \mathrm{in} ; \mathrm{y}=0.359 \mathrm{in}$
$S x=0.099 \mathrm{in}^{\wedge} 3$
$r z=0.246 \mathrm{in} ; \mathrm{Qs}=1.000$
Spacing between chord angles $=0.500$ in = 1/2"
Combination; [SW=Self Weight; F=Factor]
COMB1 $=1.00 x D L+1.00 x L L+[S W$ F=1.00]
COMB2 $=$ Not Active or Null this Combination
COMB3 $=1.00 x L L+[S W F=1.00]$
COMB4 $=0.60 x D L+1.00 x U P+[S W$ F $=0.60]$

Summary Combination Maximun Results

COMB	T. FORCE	C. FORCE	SHEAR	MOM(Mi)	MOM(Me)
	Kips	Kips	Kips	K-in	K-in
COMB1	15.044	0.000	0.001	0.000	0.000
COMB2	0.000	0.000	0.000	0.000	0.000
COMB3	12.487	0.000	0.001	0.000	0.214
COMB4	0.000	6.107	0.001	0.105	0.000

Max. Local Shear $(\mathrm{V})=0.001111$ Kips; Location in COMB1
Max. Moment $(\mathrm{Me})=0.017859$ K-ft; Location in COMB1
Max. Moment $(\mathrm{Mi})=0.008770$ K-ft; Location in COMB4
Max. Tension = 15.044 Kips; Location in COMB1
Max. Compresion $=6.107$ Kips; Location in COMB4
Original COMPRESION = YES (Use for internal information only)

Location of Reaction of Force

Max. Reation (Comb. \#1) $=$ 4.207 Kips-Use in web member w/Compr.

Slenderness Ratio

k For Calculation Fcr per Table 4.3-1
(Comp.) $\mathrm{Kx}=0.00 ; \mathrm{Ky=} 0.00$; $\mathrm{Kz}=0.90$

Max. Axial Force Top \& Bottom Chord Local

Max. Compr (top chord) force $=15.790$ Kips in Member \#7; Comb1
Max. Tension (top chord) force $=6.361$ Kips in Member \#7; Comb4
Max. Compr (Bottom chord) force $=6.363$ Kips in Member \#20; Comb4
Max. Tension (Bottom chord) force $=15.790$ Kips in Member \#20; Comb1

CHECK SLENDERNESS RATIOS

S.R. $x=\left(L^{*} 12\right) / r x=\left(1.667^{*} 12\right) / 0.385=51.962$
S.R. $y=\left(L^{*} 12\right) / r y=\left(5.667^{*} 12\right) / 0.720=94.387$
S.R. $z=\left(L z^{*} 12\right) / r z=\left(1.667^{*} 12\right) / 0.246=81.301$

SLRbc = Control = 94.387
Comp. Ratio $=$ Control $/ 200=94.4 / 200=0.472$
Comp. Status: $0.47<1.00 \ll-$ OK
Tens. Ratio $=$ Control $/ 240=94.39 / 240=0.39$
Tens. Status: $0.39<1.00 \ll-$ OK

CHECK COMPRESSION (4.2-4)

Shim, fillers or ties: NOT
S.R. $z=\left(k z^{*} L^{*} 12\right) / r z=\left(0.900^{*} 1.67^{*} 12\right) / 0.246=73.171$

SLRgov=73.17
Fy=50.00 ksi;
Area=0.59 in^2;Comp=6.11 kips; fa=Comp/Area=10.28 ksi
Fe_bc=53.46 ksi; Fcr_bc=33.80 ksi
Fcr=33.80 ksi; Fa=0.6Fcr= 20.28 ksi
IRc=fa/Fa=10.282/20.282=0.510
Comp. Status: $0.51<=1.00 \ll-$ OK
CHECK TENSION (Eq. 4.2-2)
$\mathrm{ft}=$ Tens \times factor/Area $=(15.044 \times 1.000) / 0.594=25.326 \mathrm{ksi}$
$\mathrm{Ft}=0.6(\mathrm{Fy})=0.6^{*} 50.000=30.000 \mathrm{ksi}$
Ratio $=\mathrm{ft} / \mathrm{Ft}=25.33 / 30.00=0.84$
Status: $0.84<1.00 \ll--$ OK
CHECK COMBINED AXIAL AND BENDING STRESSES
AT THE CENTER PANEL
Mpp=0.214 in-K; Mpnl=0.105 in-K; bbc=1.25 in.; Ybc=0.36 in. Ixtc=0.09 in^4 fbu_pp $=2.17$ ksi.; fbu_pnl $=0.43 \mathrm{ksi}$. fa=fau=fc=10.28; Abc=0.59 in^2
Check Top Chord Center Panel for Combined Axial and Bending ASD
SJI Eqs 4.4-9 \& 4.4-10
$\mathrm{fa} /\left(\mathrm{Fa} _\right.$rc) $)=0.507 ; \mathrm{Cm}=1-0.67(\mathrm{fa} / \mathrm{Fex})=0.963$
IRbc_pnl=0.51
Status: $0.51<1.0 \ll-$ OK
AT THE PANEL POINT
|Rbc_pnl=0.415
Status: $0.42<1.0 \ll-$ OK

CHECK SHEAR CAPACITY OF CHORD (Ref. SJI Spec. 4.4)
 (Panel Point=Node=Joint).

Angle $b=1.25$ in, Angle $t=0.13$ in
OmegaW=1.500;fn=30.000;fn \times OmegaW $=20.000$,Force $(P)=12.787$ kips $b=1.250 \mathrm{in} ; \mathrm{t}=0.125 \mathrm{in} ; \mathrm{ft}=\mathrm{P} / \mathrm{A}=21.527 \mathrm{ksi}$
Evaluation Node \#19; Shear $(\mathrm{V})=1.292 ; \mathrm{fv}=\mathrm{V} /\left(\mathrm{bt}^{*} 2^{*} \mathrm{t}\right)=4.134$; $\mathrm{fvmod}=11.530$
fvmod=(1/2)* $\left(\mathrm{ft}^{\wedge} 2+4 \mathrm{fv}^{\wedge} 2\right)^{\wedge} 1 / 2=11.530<=\mathrm{fn} /$ OmegaW OK
Evaluation Node \#20; Shear $(\mathrm{V})=0.910 ; \mathrm{fv}=\mathrm{V} /\left(\mathrm{bt}{ }^{*} 2\right)=2.911$; $\mathrm{fvmod}=11.150$
fvmod $=(1 / 2)^{\star}\left(\mathrm{ft}^{\wedge} 2+4 \mathrm{fv}^{\wedge} 2\right)^{\wedge} 1 / 2=11.150<=\mathrm{fn} /$ OmegaW OK

DESIGN MEMBER

INPUT FORM (ASD) Revision SJI 100-2020

Member Number = 19
Serial $=\mathrm{K}$
Member name = Bottom chord interior panel
Type $=$ 2Angle(1)
Section = $\lrcorner\llcorner$
Designation = L1 1/4×1 1/4x1/8 (SLV); A = 0.594^2; Fy=50 ksi
Reinforcement = NA;
Span design = 260.00 in
Lenght Member $=1^{\prime}-8$ " $=1.667 \mathrm{ft}$. $=20.00 \mathrm{in}$.
Tension \& Compression Factor Design $=1.000$
Max. Code Check Ratio $=1.00$
Ω (Omega) $=1.67=1 / 1.67=0.6$; Spec. Section 4.2.3 Eq. 4.2
Omega Welding $=2.00$ Ref. SJI Spec 4.2.3.4
Min. Thicknees Material $=1 / 8^{\prime \prime}=0.125 \mathrm{in}$.
Weld Size(tw) $=1 / 8^{\prime \prime}=0.125 \mathrm{in} .=2.000$
Spc's of Bridging Lbry = 5.667 ft . (Bottom Bridging)

EFFECTIVE SLENDERNESS RATIOS TABLE 4.3-1

Maximun Slenderness Ratio (all = allowable)
For Compression member Slenderness Ratio not excced $=200$
For Tension member Slenderness Ratio not excced 240

Data Member

Yield Stress: Fy=50 ksi
Modulus of Elasticity: E=29000 ksi
Area $=0.594$ in $^{\wedge} 2 ; \mathrm{k}=0.318$ inches
Inertia $x=0.088$ in^4, $\mathrm{ly}=0.308$ in $^{\wedge} 4$
$r x=0.38 \mathrm{in} ; r y=0.72 \mathrm{in} ; y=0.359 \mathrm{in}$
$\mathrm{Sx}=0.099 \mathrm{in}^{\wedge} 3$
$\mathrm{rz}=0.246 \mathrm{in} ; \mathrm{Qs}=1.000$
Spacing between chord angles $=0.500$ in $=1 / 2^{\prime \prime}$
Combination; [SW=Self Weight; F=Factor]
COMB1 $=1.00 x D L+1.00 x L L+[S W$ F=1.00]
COMB2 $=$ Not Active or Null this Combination
COMB3 $=1.00 x L L+[S W$ F=1.00]
COMB4 $=0.60 x D L+1.00 x \mathrm{UP}+[S W$ F=0.60]

Summary Combination Maximun Results

COMB	T. FORCE	C. FORCE	SHEAR	MOM(Mi)	MOM(Me)
	Kips	Kips	Kips	K-in	K-in
COMB1	15.790	0.000	0.004	0.000	0.000
COMB2	0.000	0.000	0.000	0.000	0.000
COMB3	13.107	0.000	0.003	0.000	0.248
COMB4	0.000	6.363	0.001	0.122	0.000

Max. Local Shear $(\mathrm{V})=0.003536$ Kips; Location in COMB1
Max. Moment $(\mathrm{Me})=0.020694$ K-ft; Location in COMB1
Max. Moment (Mi) $=0.010156$ K-ft; Location in COMB4
Max. Tension $=15.790$ Kips; Location in COMB1
Max. Compresion = 6.363 Kips; Location in COMB4
Original COMPRESION = YES (Use for internal information only)

Location of Reaction of Force

Max. Reation (Comb. \#4) $=-1.894$ Kips-Use in web member w/Tension
Max. Reation (Comb. \#1) $=4.207$ Kips-Use in web member w/Compr.

Slenderness Ratio

k For Calculation Fcr per Table 4.3-1
(Comp.) Kx=0.00; Ky=0.00; Kz=0.90

Max. Axial Force Top \& Bottom Chord Local

Max. Compr (top chord) force $=15.790$ Kips in Member \#7; Comb1 Max. Tension (top chord) force $=6.361$ Kips in Member \#7; Comb4 Max. Compr (Bottom chord) force $=6.363$ Kips in Member \#20; Comb4
Max. Tension (Bottom chord) force $=15.790$ Kips in Member \#20; Comb1

CHECK SLENDERNESS RATIOS

S.R. $x=\left(L^{*} 12\right) / r x=\left(1.667^{*} 12\right) / 0.385=51.962$
S.R. $y=\left(L^{*} 12\right) / r y=\left(5.667^{*} 12\right) / 0.720=94.387$
S.R. $z=\left(L z^{*} 12\right) / r z=\left(1.667^{*} 12\right) / 0.246=81.301$

SLRbc = Control = 94.387
Comp. Ratio $=$ Control $/ 200=94.4 / 200=0.472$
Comp. Status: $0.47<1.00 \ll--$ OK
Tens. Ratio $=$ Control $/ 240=94.39 / 240=0.39$
Tens. Status: $0.39<1.00 \ll-$ OK

CHECK COMPRESSION (4.2-4)

Shim, fillers or ties: NOT
S.R. $z=\left(k z^{*} L^{*} 12\right) / r z=\left(0.900^{*} 1.67^{*} 12\right) / 0.246=73.171$

SLRgov=73.17
Fy=50.00 ksi;
Area=0.59 in^2;Comp=6.36 kips; fa=Comp/Area=10.71 ksi
Fe_bc=53.46 ksi; Fcr_bc=33.80 ksi
$\mathrm{Fcr}=33.80 \mathrm{ksi} ; \mathrm{Fa}=0.6 \mathrm{Fcr}=20.28 \mathrm{ksi}$
IRc=fa/Fa=10.712/20.282=0.530
Comp. Status: $0.53<=1.00 \ll-$ OK
CHECK TENSION (Eq. 4.2-2)
$\mathrm{ft}=$ Tens \times factor/Area $=(15.790 \times 1.000) / 0.594=26.583 \mathrm{ksi}$
$\mathrm{Ft}=0.6(\mathrm{Fy})=0.6 * 50.000=30.000 \mathrm{ksi}$
Ratio $=\mathrm{ft} / \mathrm{Ft}=26.58 / 30.00=0.89$
Status: 0.89 < 1.00 <<-- OK
CHECK COMBINED AXIAL AND BENDING STRESSES
AT THE CENTER PANEL
Mpp=0.248 in-K; Mpnl=0.122 in-K; bbc=1.25 in.; Ybc=0.36 in. Ixtc=0.09 in^4
fbu_pp $=2.51$ ksi.; fbu_pnl $=0.50 \mathrm{ksi}$. fa=fau=fc=10.71; Abc=0.59 in^2
Check Top Chord Center Panel for Combined Axial and Bending ASD
SJI Eqs 4.4-9 \& 4.4-10
$\mathrm{fa} /\left(\mathrm{Fa} _\right.$rc) $)=0.528 ; \mathrm{Cm}=1-0.67(\mathrm{fa} / \mathrm{Fex})=0.962$
|Rbc_pnl=0.54
Status: $0.54<1.0 \ll--$ OK
AT THE PANEL POINT
IRbc_pnl=0.441
Status: 0.44 < 1.0 <<-- OK

CHECK SHEAR CAPACITY OF CHORD (Ref. SJI Spec. 4.4)
 (Panel Point=Node=Joint).

Angle $\mathrm{b}=1.25$ in, Angle $\mathrm{t}=0.13$ in
OmegaW=1.500;fn=30.000;fn \times OmegaW=20.000,Force(P)=13.422 kips $\mathrm{b}=1.250 \mathrm{in} ; \mathrm{t}=0.125 \mathrm{in} ; \mathrm{ft}=\mathrm{P} / \mathrm{A}=22.595 \mathrm{ksi}$
Evaluation Node \#20; Shear(V) = 0.910; fv=V/(bt*2*t)=2.911; fvmod=11.666 fvmod=(1/2)*(ft^2+4fv^2)^1/2=11.666 <= fn/OmegaW OK
Evaluation Node \#21; Shear(V) $=0.910 ; f v=V /(b t * 2)=2.911 ;$ fvmod=11.666
fvmod $=(1 / 2)^{\star}\left(\mathrm{ft}^{\wedge} 2+4 \mathrm{fv} \wedge 2\right)^{\wedge} 1 / 2=11.666<=\mathrm{fn} /$ OmegaW OK

DESIGN MEMBER

INPUT FORM (ASD) Revision SJI 100-2020
Member Number = 20
Serial $=\mathrm{K}$
Member name = Bottom chord interior panel
Type $=$ 2Angle(1)
Section = $\lrcorner\llcorner$
Designation = L1 1/4×1 1/4x1/8 (SLV); A = 0.594^2; Fy=50 ksi
Reinforcement = NA;
Span design = 260.00 in
Lenght Member $=1^{\prime}-8$ " $=1.667 \mathrm{ft}$. $=20.00 \mathrm{in}$.
Tension \& Compression Factor Design $=1.000$
Max. Code Check Ratio $=1.00$
Ω (Omega) $=1.67=1 / 1.67=0.6$; Spec. Section 4.2.3 Eq. 4.2
Omega Welding $=2.00$ Ref. SJI Spec 4.2.3.4
Min. Thicknees Material $=1 / 8^{\prime \prime}=0.125 \mathrm{in}$.
Weld Size(tw) $=1 / 8^{\prime \prime}=0.125 \mathrm{in} .=2.000$
Spc's of Bridging Lbry = 5.667 ft . (Bottom Bridging)

EFFECTIVE SLENDERNESS RATIOS TABLE 4.3-1

Maximun Slenderness Ratio (all = allowable)
For Compression member Slenderness Ratio not excced $=200$
For Tension member Slenderness Ratio not excced 240

Data Member

Yield Stress: Fy=50 ksi
Modulus of Elasticity: E=29000 ksi
Area $=0.594$ in $^{\wedge} 2 ; \mathrm{k}=0.318$ inches
Inertia $x=0.088$ in^4, $\mathrm{ly}=0.308$ in $^{\wedge} 4$
$r x=0.38 \mathrm{in} ; r y=0.72 \mathrm{in} ; y=0.359 \mathrm{in}$
$\mathrm{Sx}=0.099 \mathrm{in}^{\wedge} 3$
$\mathrm{rz}=0.246 \mathrm{in} ; \mathrm{Qs}=1.000$
Spacing between chord angles $=0.500$ in $=1 / 2^{\prime \prime}$
Combination; [SW=Self Weight; F=Factor]
COMB1 $=1.00 x D L+1.00 x L L+[S W$ F $=1.00]$
COMB2 $=$ Not Active or Null this Combination
COMB3 $=1.00 x L L+[S W$ F=1.00]
COMB4 $=0.60 x D L+1.00 x \mathrm{UP}+[S W$ F=0.60]

Summary Combination Maximun Results

COMB	T. FORCE	C. FORCE	SHEAR	MOM(Mi)	MOM(Me)
	Kips	Kips	Kips	K-in	K-in
COMB1	15.790	0.000	0.004	0.000	0.000
COMB2	0.000	0.000	0.000	0.000	0.000
COMB3	13.107	0.000	0.003	0.000	0.248
COMB4	0.000	6.363	0.001	0.122	0.000

Max. Local Shear $(\mathrm{V})=0.003536$ Kips; Location in COMB1
Max. Moment $(\mathrm{Me})=0.020694$ K-ft; Location in COMB1
Max. Moment (Mi) $=0.010156$ K-ft; Location in COMB4
Max. Tension $=15.790$ Kips; Location in COMB1
Max. Compresion = 6.363 Kips; Location in COMB4
Original COMPRESION = YES (Use for internal information only)

Location of Reaction of Force

Max. Reation (Comb. \#4) $=-1.894$ Kips-Use in web member w/Tension
Max. Reation (Comb. \#1) $=4.207$ Kips-Use in web member w/Compr.

Slenderness Ratio

k For Calculation Fcr per Table 4.3-1
(Comp.) $\mathrm{Kx}=0.00 ; \mathrm{Ky=} 0.00$; $\mathrm{Kz}=0.90$

Max. Axial Force Top \& Bottom Chord Local

Max. Compr (top chord) force $=15.790$ Kips in Member \#7; Comb1 Max. Tension (top chord) force $=6.361$ Kips in Member \#7; Comb4
Max. Compr (Bottom chord) force $=6.363$ Kips in Member \#20; Comb4
Max. Tension (Bottom chord) force $=15.790$ Kips in Member \#20; Comb1

CHECK SLENDERNESS RATIOS

S.R. $x=\left(L^{*} 12\right) / r x=\left(1.667^{*} 12\right) / 0.385=51.962$
S.R. $y=\left(L^{*} 12\right) / r y=\left(5.667^{*} 12\right) / 0.720=94.387$
S.R. $z=\left(L z^{*} 12\right) / r z=\left(1.667^{*} 12\right) / 0.246=81.301$

SLRbc = Control = 94.387
Comp. Ratio $=$ Control $/ 200=94.4 / 200=0.472$
Comp. Status: $0.47<1.00 \ll-$ OK
Tens. Ratio $=$ Control $/ 240=94.39 / 240=0.39$
Tens. Status: $0.39<1.00 \ll-$ OK

CHECK COMPRESSION (4.2-4)

Shim, fillers or ties: NOT
S.R. $z=\left(k z^{*} L^{*} 12\right) / r z=\left(0.900^{*} 1.67^{*} 12\right) / 0.246=73.171$

SLRgov=73.17
Fy=50.00 ksi;
Area=0.59 in^2;Comp=6.36 kips; fa=Comp/Area=10.71 ksi
Fe_bc=53.46 ksi; Fcr_bc=33.80 ksi
$\mathrm{Fcr}=33.80 \mathrm{ksi} ; \mathrm{Fa}=0.6 \mathrm{Fcr}=20.28 \mathrm{ksi}$
IRc=fa/Fa=10.712/20.282=0.530
Comp. Status: $0.53<=1.00 \ll-$ OK
CHECK TENSION (Eq. 4.2-2)
$\mathrm{ft}=$ Tens \times factor/Area $=(15.790 \times 1.000) / 0.594=26.583 \mathrm{ksi}$
$\mathrm{Ft}=0.6(\mathrm{Fy})=0.6 * 50.000=30.000 \mathrm{ksi}$
Ratio $=\mathrm{ft} / \mathrm{Ft}=26.58 / 30.00=0.89$
Status: 0.89 < 1.00 <<-- OK
CHECK COMBINED AXIAL AND BENDING STRESSES
AT THE CENTER PANEL
Mpp=0.248 in-K; Mpnl=0.122 in-K; bbc=1.25 in.; Ybc=0.36 in. Ixtc=0.09 in^4
fbu_pp $=2.51$ ksi.; fbu_pnl $=0.50 \mathrm{ksi}$. fa=fau=fc=10.71; Abc=0.59 in^2
Check Top Chord Center Panel for Combined Axial and Bending ASD
SJI Eqs 4.4-9 \& 4.4-10
$\mathrm{fa} /\left(\mathrm{Fa} _\right.$rc) $)=0.528 ; \mathrm{Cm}=1-0.67(\mathrm{fa} / \mathrm{Fex})=0.962$
|Rbc_pnl=0.54
Status: $0.54<1.0 \ll--$ OK
AT THE PANEL POINT
IRbc_pnl=0.441
Status: 0.44 < 1.0 <<-- OK

CHECK SHEAR CAPACITY OF CHORD (Ref. SJI Spec. 4.4)
 (Panel Point=Node=Joint).

Angle $\mathrm{b}=1.25$ in, Angle $\mathrm{t}=0.13$ in
OmegaW $=1.500 ; \mathrm{fn}=30.000 ;$ fn \times OmegaW $=20.000$,Force $(\mathrm{P})=13.422 \mathrm{kips}$ $\mathrm{b}=1.250 \mathrm{in} ; \mathrm{t}=0.125 \mathrm{in} ; \mathrm{ft}=\mathrm{P} / \mathrm{A}=22.595 \mathrm{ksi}$
Evaluation Node \#21; Shear $(\mathrm{V})=0.910 ; f v=\mathrm{V} /\left(\mathrm{bt}{ }^{*} 2^{*} \mathrm{t}\right)=2.911$; $\mathrm{fvmod}=11.666$ fvmod=(1/2)*(ft^2+4fv^2)^1/2=11.666 <= fn/OmegaW OK
Evaluation Node \#22; Shear(V) $=0.910 ; f v=V /(b t * 2)=2.911 ;$ fvmod $=11.666$
fvmod $=(1 / 2)^{\star}\left(\mathrm{ft}^{\wedge} 2+4 \mathrm{fv} \wedge 2\right)^{\wedge} 1 / 2=11.666<=$ fn/OmegaW OK

DESIGN MEMBER

INPUT FORM (ASD) Revision SJI 100-2020
Member Number = 21
Serial $=\mathrm{K}$
Member name = Bottom chord interior panel
Type $=$ 2Angle(1)
Section = $\lrcorner\llcorner$
Designation = L1 1/4×1 1/4x1/8 (SLV); A = 0.594^2; Fy=50 ksi
Reinforcement = NA;
Span design = 260.00 in
Lenght Member $=1^{\prime}-8$ " $=1.667 \mathrm{ft}$. $=20.00 \mathrm{in}$.
Tension \& Compression Factor Design $=1.000$
Max. Code Check Ratio $=1.00$
Ω (Omega) $=1.67=1 / 1.67=0.6$; Spec. Section 4.2.3 Eq. 4.2
Omega Welding $=2.00$ Ref. SJI Spec 4.2.3.4
Min. Thicknees Material $=1 / 8^{\prime \prime}=0.125 \mathrm{in}$.
Weld Size(tw) $=1 / 8^{\prime \prime}=0.125 \mathrm{in} .=2.000$
Spc's of Bridging Lbry = 5.667 ft . (Bottom Bridging)

EFFECTIVE SLENDERNESS RATIOS TABLE 4.3-1

Maximun Slenderness Ratio (all = allowable)
For Compression member Slenderness Ratio not excced $=200$
For Tension member Slenderness Ratio not excced 240

Data Member

Yield Stress: Fy=50 ksi
Modulus of Elasticity: E=29000 ksi
Area $=0.594$ in $^{\wedge} 2 ; \mathrm{k}=0.318$ inches
Inertia $x=0.088$ in^4, $\mathrm{ly}=0.308$ in $^{\wedge} 4$
$r x=0.38 \mathrm{in} ; r y=0.72 \mathrm{in} ; y=0.359 \mathrm{in}$
$\mathrm{Sx}=0.099 \mathrm{in}^{\wedge} 3$
$\mathrm{rz}=0.246 \mathrm{in} ; \mathrm{Qs}=1.000$
Spacing between chord angles $=0.500$ in $=1 / 2^{\prime \prime}$
Combination; [SW=Self Weight; F=Factor]
COMB1 $=1.00 x D L+1.00 x L L+[S W$ F $=1.00]$
COMB2 $=$ Not Active or Null this Combination
COMB3 $=1.00 x L L+[S W$ F=1.00]
COMB4 $=0.60 x D L+1.00 x \mathrm{UP}+[S W$ F=0.60]

Summary Combination Maximun Results

COMB	T. FORCE	C. FORCE	SHEAR	MOM(Mi)	MOM(Me)
	Kips	Kips	Kips	K-in	K-in
COMB1	15.044	0.000	0.001	0.000	0.000
COMB2	0.000	0.000	0.000	0.000	0.000
COMB3	12.487	0.000	0.001	0.000	0.214
COMB4	0.000	6.107	0.001	0.105	0.000

Max. Local Shear $(\mathrm{V})=0.001111$ Kips; Location in COMB1
Max. Moment $(\mathrm{Me})=0.017859$ K-ft; Location in COMB1
Max. Moment (Mi) $=0.008770$ K-ft; Location in COMB4
Max. Tension = 15.044 Kips; Location in COMB1
Max. Compresion = 6.107 Kips; Location in COMB4
Original COMPRESION = YES (Use for internal information only)

Location of Reaction of Force

Max. Reation (Comb. \#4) $=-1.894$ Kips-Use in web member w/Tension
Max. Reation (Comb. \#1) $=4.207$ Kips-Use in web member w/Compr.

Slenderness Ratio

k For Calculation Fcr per Table 4.3-1
(Comp.) $\mathrm{Kx}=0.00 ; \mathrm{Ky=} 0.00$; $\mathrm{Kz}=0.90$

Max. Axial Force Top \& Bottom Chord Local

Max. Compr (top chord) force $=15.790$ Kips in Member \#7; Comb1 Max. Tension (top chord) force $=6.361$ Kips in Member \#7; Comb4 Max. Compr (Bottom chord) force $=6.363$ Kips in Member \#20; Comb4
Max. Tension (Bottom chord) force $=15.790$ Kips in Member \#20; Comb1

CHECK SLENDERNESS RATIOS

S.R. $x=\left(L^{*} 12\right) / r x=\left(1.667^{*} 12\right) / 0.385=51.962$
S.R. $y=\left(L^{*} 12\right) / r y=\left(5.667^{*} 12\right) / 0.720=94.387$
S.R. $z=\left(L z^{*} 12\right) / r z=\left(1.667^{*} 12\right) / 0.246=81.301$

SLRbc = Control = 94.387
Comp. Ratio $=$ Control $/ 200=94.4 / 200=0.472$
Comp. Status: $0.47<1.00 \ll-$ OK
Tens. Ratio $=$ Control $/ 240=94.39 / 240=0.39$
Tens. Status: $0.39<1.00 \ll-$ OK

CHECK COMPRESSION (4.2-4)

Shim, fillers or ties: NOT
S.R. $z=\left(k z^{*} L^{*} 12\right) / r z=\left(0.900^{*} 1.67^{*} 12\right) / 0.246=73.171$

SLRgov=73.17
Fy=50.00 ksi;
Area=0.59 in^2;Comp=6.11 kips; fa=Comp/Area=10.28 ksi
Fe_bc=53.46 ksi; Fcr_bc=33.80 ksi
$\mathrm{Fcr}=33.80 \mathrm{ksi} ; \mathrm{Fa}=0.6 \mathrm{Fcr}=20.28 \mathrm{ksi}$
IRc=fa/Fa=10.282/20.282=0.510
Comp. Status: $0.51<=1.00 \ll-$ OK
CHECK TENSION (Eq. 4.2-2)
$\mathrm{ft}=$ Tens \times factor/Area $=(15.044 \times 1.000) / 0.594=25.326 \mathrm{ksi}$
$\mathrm{Ft}=0.6(\mathrm{Fy})=0.6 * 50.000=30.000 \mathrm{ksi}$
Ratio $=\mathrm{ft} / \mathrm{Ft}=25.33 / 30.00=0.84$
Status: $0.84<1.00$ <<-- OK
CHECK COMBINED AXIAL AND BENDING STRESSES
AT THE CENTER PANEL
Mpp=0.214 in-K; Mpnl=0.105 in-K; bbc=1.25 in.; Ybc=0.36 in. Ixtc=0.09 in^4 fbu_pp $=2.17 \mathrm{ksi} . ;$ fbu_pnl $=0.43 \mathrm{ksi}$. fa=fau=fc=10.28; Abc=0.59 in^2
Check Top Chord Center Panel for Combined Axial and Bending ASD
SJI Eqs 4.4-9 \& 4.4-10
$\mathrm{fa} /\left(\mathrm{Fa} _\right.$rc) $=0.507 ; \mathrm{Cm}=1-0.67(\mathrm{fa} / \mathrm{Fex})=0.963$
|Rbc_pnl=0.51
Status: $0.51<1.0 \ll-$ OK
AT THE PANEL POINT
IRbc_pnl=0.415
Status: 0.42 < 1.0 <<-- OK

CHECK SHEAR CAPACITY OF CHORD (Ref. SJI Spec. 4.4)
 (Panel Point=Node=Joint).

Angle $\mathrm{b}=1.25$ in, Angle $\mathrm{t}=0.13$ in
OmegaW=1.500;fn=30.000;fn \times OmegaW=20.000,Force $(\mathrm{P})=12.787 \mathrm{kips}$ $\mathrm{b}=1.250 \mathrm{in} ; \mathrm{t}=0.125 \mathrm{in} ; \mathrm{ft}=\mathrm{P} / \mathrm{A}=21.527 \mathrm{ksi}$
Evaluation Node \#22; Shear (V) $=0.910 ; \mathrm{fv}=\mathrm{V} /\left(\mathrm{bt}{ }^{*} 2^{*} \mathrm{t}\right)=2.911 ; \mathrm{fvmod}=11.150$
fvmod=(1/2)*(ft^2+4fv^2)^1/2=11.150 <= fn/OmegaW OK
Evaluation Node \#23; Shear(V) = 1.292; fv=V/(bt*2)=4.134; fvmod=11.530
fvmod $=(1 / 2)^{\star}\left(\mathrm{ft}^{\wedge} 2+4 \mathrm{fv} \wedge 2\right)^{\wedge} 1 / 2=11.530<=$ fn/OmegaW OK

DESIGN MEMBER

INPUT FORM (ASD) Revision SJI 100-2020

Member Number = 22
Serial =K
Member name $=$ Bottom chord interior panel
Type = 2Angle(1)
Section = $\lrcorner\llcorner$
Designation $=L 11 / 4 \times 1$ 1/4x1/8 (SLV); $A=0.594^{\wedge} 2 ; F y=50 \mathrm{ksi}$
Reinforcement = NA;
Span design $=260.00$ in
Lenght Member $=1^{\prime}-8^{\prime \prime}=1.667 \mathrm{ft}$. $=20.00 \mathrm{in}$.
Tension \& Compression Factor Design $=1.000$
Max. Code Check Ratio = 1.00
$\Omega($ Omega $)=1.67=1 / 1.67=0.6$; Spec. Section 4.2.3 Eq. 4.2
Omega Welding = 2.00 Ref. SJI Spec 4.2.3.4
Min. Thicknees Material $=1 / 8^{\prime \prime}=0.125$ in.
Weld Size(tw) = 1/8" = 0.125 in. $=2.000$
Spc's of Bridging Lbry $=5.667 \mathrm{ft}$. (Bottom Bridging)

EFFECTIVE SLENDERNESS RATIOS TABLE 4.3-1

Maximun Slenderness Ratio (all = allowable)
For Compression member Slenderness Ratio not excced $=200$
For Tension member Slenderness Ratio not excced 240

Data Member

Yield Stress: Fy=50 ksi
Modulus of Elasticity: E=29000 ksi
Area $=0.594$ in^2 $^{\wedge} ; \mathrm{k}=0.318$ inches
Inertia $x=0.088$ in $^{\wedge} 4$, ly= 0.308 in $^{\wedge} 4$
$r x=0.38 \mathrm{in} ; r y=0.72 \mathrm{in} ; \mathrm{y}=0.359 \mathrm{in}$
$S x=0.099 \mathrm{in}^{\wedge} 3$
$r z=0.246 \mathrm{in} ; \mathrm{Qs}=1.000$
Spacing between chord angles $=0.500$ in = 1/2"
Combination; [SW=Self Weight; F=Factor]
COMB1 $=1.00 x D L+1.00 x L L+[S W$ F=1.00]
COMB2 $=$ Not Active or Null this Combination
COMB3 $=1.00 x L L+[S W F=1.00]$
COMB4 $=0.60 x D L+1.00 x U P+[S W$ F $=0.60]$

Summary Combination Maximun Results

COMB	T. FORCE	C. FORCE	SHEAR	MOM(Mi)	MOM(Me)
	Kips	Kips	Kips	K-in	K-in
COMB1	13.545	0.000	0.002	0.000	0.000
COMB2	0.000	0.000	0.000	0.000	0.000
COMB3	11.244	0.000	0.002	0.000	0.208
COMB4	0.000	5.605	0.001	0.105	0.000

Max. Local Shear $(V)=0.002444$ Kips; Location in COMB1
Max. Moment $(\mathrm{Me})=0.017340$ K-ft; Location in COMB1
Max. Moment $(\mathrm{Mi})=0.008770$ K-ft; Location in COMB4
Max. Tension = 13.545 Kips; Location in COMB1
Max. Compresion $=5.605$ Kips; Location in COMB4
Original COMPRESION = YES (Use for internal information only)

Location of Reaction of Force

Max. Reation (Comb. \#1) $=$ 4.207 Kips-Use in web member w/Compr.

Slenderness Ratio

k For Calculation Fcr per Table 4.3-1
(Comp.) $\mathrm{Kx}=0.00 ; \mathrm{Ky=} 0.00$; $\mathrm{Kz}=0.90$

Max. Axial Force Top \& Bottom Chord Local

Max. Compr (top chord) force $=15.790$ Kips in Member \#7; Comb1
Max. Tension (top chord) force $=6.361$ Kips in Member \#7; Comb4
Max. Compr (Bottom chord) force $=6.363$ Kips in Member \#20; Comb4
Max. Tension (Bottom chord) force $=15.790$ Kips in Member \#20; Comb1

CHECK SLENDERNESS RATIOS

S.R. $x=\left(L^{*} 12\right) / r x=\left(1.667^{*} 12\right) / 0.385=51.962$
S.R. $y=\left(L^{*} 12\right) / r y=\left(5.667^{*} 12\right) / 0.720=94.387$
S.R. $z=\left(L z^{*} 12\right) / r z=\left(1.667^{*} 12\right) / 0.246=81.301$

SLRbc = Control = 94.387
Comp. Ratio $=$ Control $/ 200=94.4 / 200=0.472$
Comp. Status: $0.47<1.00 \ll--$ OK
Tens. Ratio $=$ Control $/ 240=94.39 / 240=0.39$
Tens. Status: $0.39<1.00 \ll-$ OK

CHECK COMPRESSION (4.2-4)

Shim, fillers or ties: NOT
S.R. $z=\left(k z^{*} L^{*} 12\right) / r z=\left(0.900^{*} 1.67^{*} 12\right) / 0.246=73.171$

SLRgov=73.17
Fy=50.00 ksi;
Area=0.59 in^2;Comp=5.61 kips; fa=Comp/Area=9.44 ksi
Fe_bc=53.46 ksi; Fcr_bc=33.80 ksi
Fcr=33.80 ksi; Fa=0.6Fcr= 20.28 ksi
IRc=fa/Fa=9.436/20.282=0.470
Comp. Status: $0.47<=1.00 \ll-$ OK
CHECK TENSION (Eq. 4.2-2)
$\mathrm{ft}=$ Tens \times factor/Area $=(13.545 \times 1.000) / 0.594=22.803 \mathrm{ksi}$
$\mathrm{Ft}=0.6(\mathrm{Fy})=0.6^{*} 50.000=30.000 \mathrm{ksi}$
Ratio $=\mathrm{ft} / \mathrm{Ft}=22.80 / 30.00=0.76$
Status: $0.76<1.00 \ll--$ OK
CHECK COMBINED AXIAL AND BENDING STRESSES
AT THE CENTER PANEL
Mpp=0.208 in-K; Mpnl=0.105 in-K; bbc=1.25 in.; Ybc=0.36 in. Ixtc=0.09 in^4 fbu_pp $=2.11 \mathrm{ksi} . ;$ fbu_pnl $=0.43 \mathrm{ksi} . \mathrm{fa}=\mathrm{fau}=\mathrm{fc}=9.44 ; \mathrm{Abc}=0.59 \mathrm{in}{ }^{\wedge} 2$
Check Top Chord Center Panel for Combined Axial and Bending ASD
SJI Eqs 4.4-9 \& 4.4-10
$\mathrm{fa} /(\mathrm{Fa}$ rc) $)=0.465 ; \mathrm{Cm}=1-0.67(\mathrm{fa} / \mathrm{Fex})=0.966$
IRbc_pnl=0.47
Status: $0.47<1.0 \ll-$ OK
AT THE PANEL POINT
|Rbc_pnl=0.385
Status: $0.38<1.0 \ll-$ OK

CHECK SHEAR CAPACITY OF CHORD (Ref. SJI Spec. 4.4)
 (Panel Point=Node=Joint).

Angle $b=1.25$ in, Angle $t=0.13$ in
OmegaW =1.500;fn=30.000;fn x OmegaW $=20.000$,Force $(P)=11.513$ kips $b=1.250 \mathrm{in} ; \mathrm{t}=0.125 \mathrm{in} ; \mathrm{ft}=\mathrm{P} / \mathrm{A}=19.382 \mathrm{ksi}$
Evaluation Node \#23; Shear $(\mathrm{V})=1.292 ; \mathrm{fv}=\mathrm{V} /\left(\mathrm{bt}{ }^{*} 2^{*} \mathrm{t}\right)=4.134$; $\mathrm{fvmod}=10.536$
fvmod=(1/2)*(ft^2+4fv^2)^1/2=10.536 <= fn/OmegaW OK
Evaluation Node \#24; Shear $(\mathrm{V})=1.947 ; \mathrm{fv}=\mathrm{V} /\left(\mathrm{bt}{ }^{*} 2\right)=6.229$; $\mathrm{fvmod}=11.521$
fvmod $=(1 / 2)^{\star}\left(\mathrm{ft}^{\wedge} 2+4 \mathrm{fv}^{\wedge} 2\right)^{\wedge} 1 / 2=11.521<=\mathrm{fn} /$ OmegaW OK

DESIGN MEMBER

INPUT FORM (ASD) Revision SJI 100-2020

Member Number = 23
Serial =K
Member name = Bottom chord interior panel
Type = 2Angle(1)
Section = $\lrcorner\llcorner$
Designation $=L 11 / 4 \times 1$ 1/4x1/8 (SLV); $A=0.594^{\wedge} 2 ; F y=50 \mathrm{ksi}$
Reinforcement = NA;
Span design $=260.00$ in
Lenght Member $=1^{\prime}-8^{\prime \prime}=1.667 \mathrm{ft}$. $=20.00 \mathrm{in}$.
Tension \& Compression Factor Design $=1.000$
Max. Code Check Ratio = 1.00
$\Omega($ Omega $)=1.67=1 / 1.67=0.6$; Spec. Section 4.2.3 Eq. 4.2
Omega Welding = 2.00 Ref. SJI Spec 4.2.3.4
Min. Thicknees Material $=1 / 8^{\prime \prime}=0.125$ in.
Weld Size(tw) = 1/8" = $0.125 \mathrm{in} .=2.000$
Spc's of Bridging Lbry $=5.667 \mathrm{ft}$. (Bottom Bridging)

EFFECTIVE SLENDERNESS RATIOS TABLE 4.3-1

Maximun Slenderness Ratio (all = allowable)
For Compression member Slenderness Ratio not excced $=200$
For Tension member Slenderness Ratio not excced 240

Data Member

Yield Stress: Fy=50 ksi
Modulus of Elasticity: E=29000 ksi
Area $=0.594$ in^2 $^{\wedge} ; \mathrm{k}=0.318$ inches
Inertia $x=0.088$ in $^{\wedge} 4$, ly= 0.308 in $^{\wedge} 4$
$r x=0.38 \mathrm{in} ; r y=0.72 \mathrm{in} ; \mathrm{y}=0.359 \mathrm{in}$
$S x=0.099 \mathrm{in}^{\wedge} 3$
$r z=0.246 \mathrm{in} ; \mathrm{Qs}=1.000$
Spacing between chord angles $=0.500$ in = 1/2"
Combination; [SW=Self Weight; F=Factor]
COMB1 $=1.00 x D L+1.00 x L L+[S W$ F=1.00]
COMB2 $=$ Not Active or Null this Combination
COMB3 $=1.00 x L L+[S W F=1.00]$
COMB4 $=0.60 x D L+1.00 x U P+[S W$ F $=0.60]$

Summary Combination Maximun Results

COMB	T. FORCE Kips	C. FORCE Kips	SHEAR Kips	$\begin{aligned} & \text { MOM(Mi) } \\ & \text { K-in } \end{aligned}$	$\begin{aligned} & \text { MOM(Me) } \\ & \text { K-in } \end{aligned}$
COMB1	11.286	0.000	0.004	0.000	0.000
COMB2	0.000	0.000	0.000	0.000	0.000
COMB3	9.369	0.000	0.003	0.000	0.182
COMB4	0.000	4.806	0.001	0.097	0.000

Max. Local Shear $(\mathrm{V})=0.003868$ Kips; Location in COMB1
Max. Moment $(\mathrm{Me})=0.015131 \mathrm{~K}-\mathrm{ft}$; Location in COMB1
Max. Moment $(\mathrm{Mi})=0.008093$ K-ft; Location in COMB4
Max. Tension = 11.286 Kips; Location in COMB1
Max. Compresion $=4.806$ Kips; Location in COMB4
Original COMPRESION = YES (Use for internal information only)

Location of Reaction of Force

Max. Reation (Comb. \#1) $=$ 4.207 Kips-Use in web member w/Compr.

Slenderness Ratio

k For Calculation Fcr per Table 4.3-1
(Comp.) $\mathrm{Kx}=0.00 ; \mathrm{Ky=} 0.00$; $\mathrm{Kz}=0.90$

Max. Axial Force Top \& Bottom Chord Local

Max. Compr (top chord) force $=15.790$ Kips in Member \#7; Comb1
Max. Tension (top chord) force $=6.361$ Kips in Member \#7; Comb4
Max. Compr (Bottom chord) force $=6.363$ Kips in Member \#20; Comb4
Max. Tension (Bottom chord) force $=15.790$ Kips in Member \#20; Comb1

CHECK SLENDERNESS RATIOS

S.R. $x=\left(L^{*} 12\right) / r x=\left(1.667^{*} 12\right) / 0.385=51.962$
S.R. $y=\left(L^{*} 12\right) / r y=\left(5.667^{*} 12\right) / 0.720=94.387$
S.R. $z=\left(L z^{*} 12\right) / r z=\left(1.667^{*} 12\right) / 0.246=81.301$

SLRbc = Control = 94.387
Comp. Ratio $=$ Control $/ 200=94.4 / 200=0.472$
Comp. Status: $0.47<1.00 \ll-$ OK
Tens. Ratio $=$ Control $/ 240=94.39 / 240=0.39$
Tens. Status: $0.39<1.00 \ll-$ OK

CHECK COMPRESSION (4.2-4)

Shim, fillers or ties: NOT
S.R. $z=\left(k z^{*} L^{*} 12\right) / r z=\left(0.900^{*} 1.67^{*} 12\right) / 0.246=73.171$

SLRgov=73.17
Fy=50.00 ksi;
Area=0.59 in^2;Comp=4.81 kips; fa=Comp/Area=8.09 ksi
Fe_bc=53.46 ksi; Fcr_bc=33.80 ksi
Fcr=33.80 ksi; Fa=0.6Fcr= 20.28 ksi
IRc=fa/Fa=8.092/20.282=0.400
Comp. Status: $0.40<=1.00 \ll-$ OK
CHECK TENSION (Eq. 4.2-2)
$\mathrm{ft}=$ Tens \times factor/Area $=(11.286 \times 1.000) / 0.594=19.000 \mathrm{ksi}$
$\mathrm{Ft}=0.6(\mathrm{Fy})=0.6^{*} 50.000=30.000 \mathrm{ksi}$
Ratio $=\mathrm{ft} / \mathrm{Ft}=19.00 / 30.00=0.63$
Status: $0.63<1.00 \ll--$ OK
CHECK COMBINED AXIAL AND BENDING STRESSES
AT THE CENTER PANEL
Mpp=0.182 in-K; Mpnl=0.097 in-K; bbc=1.25 in.; Ybc=0.36 in. Ixtc=0.09 in^4
fbu_pp $=1.84 \mathrm{ksi} . ;$ fbu_pnl $=0.40 \mathrm{ksi} . \mathrm{fa}=\mathrm{fau}=\mathrm{fc}=8.09 ; \mathrm{Abc}=0.59 \mathrm{in}{ }^{\wedge} 2$
Check Top Chord Center Panel for Combined Axial and Bending ASD
SJI Eqs 4.4-9 \& 4.4-10
$\mathrm{fa} /($ Fa_rc $)=0.399 ; \mathrm{Cm}=1-0.67(\mathrm{fa} / \mathrm{Fex})=0.971$
IRbc_pnl=0.41
Status: $0.41<1.0 \ll-$ OK
AT THE PANEL POINT
|Rbc_pnl=0.331
Status: $0.33<1.0 \ll-$ OK

CHECK SHEAR CAPACITY OF CHORD (Ref. SJI Spec. 4.4)
 (Panel Point=Node=Joint).

Angle $b=1.25$ in, Angle $t=0.13$ in
OmegaW=1.500;fn=30.000;fn x OmegaW=20.000,Force $(P)=9.593 \mathrm{kips}$ $b=1.250 \mathrm{in} ; \mathrm{t}=0.125 \mathrm{in} ; \mathrm{ft}=\mathrm{P} / \mathrm{A}=16.150 \mathrm{ksi}$
Evaluation Node \#24; Shear $(\mathrm{V})=1.947 ; \mathrm{fv}=\mathrm{V} /\left(\mathrm{bt}^{*} 2^{*} \mathrm{t}\right)=6.229 ; \mathrm{fvmod}=10.199$ fvmod=(1/2)*(ft^2+4fv^2)^1/2=10.199 <= fn/OmegaW OK
Evaluation Node \#25; Shear $(\mathrm{V})=2.537 ; \mathrm{fv}=\mathrm{V} /\left(\mathrm{bt}{ }^{*} 2\right)=8.118$; $\mathrm{fvmod}=11.450$
fvmod=(1/2)*(ft^2+4fv^2)^1/2=11.450<= fn/OmegaW OK

DESIGN MEMBER

INPUT FORM (ASD) Revision SJI 100-2020
Member Number = 24
Serial $=\mathrm{K}$
Member name $=$ Bottom chord interior panel
Type = 2Angle(1)
Section = $\lrcorner\llcorner$
Designation $=L 11 / 4 \times 1$ 1/4x1/8 (SLV); $A=0.594^{\wedge} 2 ; F y=50 \mathrm{ksi}$
Reinforcement = NA;
Span design $=260.00$ in
Lenght Member $=1^{\prime}-8{ }^{\prime \prime}=1.667 \mathrm{ft} .=20.00 \mathrm{in}$.
Tension \& Compression Factor Design $=1.000$
Max. Code Check Ratio = 1.00
$\Omega($ Omega $)=1.67=1 / 1.67=0.6$; Spec. Section 4.2.3 Eq. 4.2
Omega Welding = 2.00 Ref. SJI Spec 4.2.3.4
Min. Thicknees Material $=1 / 8^{\prime \prime}=0.125$ in.
Weld Size(tw) = 1/8" = 0.125 in. $=2.000$
Spc's of Bridging Lbry $=5.667 \mathrm{ft}$. (Bottom Bridging)

EFFECTIVE SLENDERNESS RATIOS TABLE 4.3-1

Maximun Slenderness Ratio (all = allowable)
For Compression member Slenderness Ratio not excced $=200$
For Tension member Slenderness Ratio not excced 240

Data Member

Yield Stress: Fy=50 ksi
Modulus of Elasticity: E=29000 ksi
Area $=0.594$ in^2 $^{\wedge} ; \mathrm{k}=0.318$ inches
Inertia $x=0.088$ in $^{\wedge} 4$, ly= 0.308 in $^{\wedge} 4$
$r x=0.38 \mathrm{in} ; r y=0.72 \mathrm{in} ; \mathrm{y}=0.359 \mathrm{in}$
$S x=0.099 \mathrm{in}^{\wedge} 3$
$r z=0.246 \mathrm{in} ; \mathrm{Qs}=1.000$
Spacing between chord angles $=0.500$ in = 1/2"
Combination; [SW=Self Weight; F=Factor]
COMB1 $=1.00 x D L+1.00 x L L+[S W$ F=1.00]
COMB2 $=$ Not Active or Null this Combination
COMB3 $=1.00 x L L+[S W F=1.00]$
COMB4 $=0.60 x D L+1.00 x U P+[S W$ F $=0.60]$

Summary Combination Maximun Results

| COMB | T. FORCE
 Kips | C. FORCE
 Kips | SHEAR
 Kips | MOM(Mi) | KOM(Me) |
| :--- | :---: | :--- | :---: | :---: | :--- | K-in

Max. Local Shear $(V)=0.008865$ Kips; Location in COMB1
Max. Moment $(\mathrm{Me})=0.010934$ K-ft; Location in COMB1
Max. Moment $(\mathrm{Mi})=0.006558$ K-ft; Location in COMB4
Max. Tension = 8.340 Kips; Location in COMB1
Max. Compresion = 3.634 Kips; Location in COMB4
Original COMPRESION = YES (Use for internal information only)

Location of Reaction of Force

Max. Reation (Comb. \#1) $=$ 4.207 Kips-Use in web member w/Compr.

Slenderness Ratio

k For Calculation Fcr per Table 4.3-1
(Comp.) $\mathrm{Kx}=0.00 ; \mathrm{Ky=} 0.00$; $\mathrm{Kz}=0.90$

Max. Axial Force Top \& Bottom Chord Local

Max. Compr (top chord) force $=15.790$ Kips in Member \#7; Comb1
Max. Tension (top chord) force $=6.361$ Kips in Member \#7; Comb4
Max. Compr (Bottom chord) force $=6.363$ Kips in Member \#20; Comb4
Max. Tension (Bottom chord) force $=15.790$ Kips in Member \#20; Comb1

CHECK SLENDERNESS RATIOS

S.R. $x=\left(L^{*} 12\right) / r x=\left(1.667^{*} 12\right) / 0.385=51.962$
S.R. $y=\left(L^{*} 12\right) / r y=\left(5.667^{*} 12\right) / 0.720=94.387$
S.R. $z=\left(L z^{*} 12\right) / r z=\left(1.667^{*} 12\right) / 0.246=81.301$

SLRbc = Control = 94.387
Comp. Ratio $=$ Control $/ 200=94.4 / 200=0.472$
Comp. Status: $0.47<1.00 \ll-$ OK
Tens. Ratio $=$ Control $/ 240=94.39 / 240=0.39$
Tens. Status: $0.39<1.00 \ll-$ OK

CHECK COMPRESSION (4.2-4)

Shim, fillers or ties: NOT
S.R. $z=\left(k z^{*} L^{*} 12\right) / r z=\left(0.900^{*} 1.67^{*} 12\right) / 0.246=73.171$

SLRgov=73.17
Fy=50.00 ksi;
Area=0.59 in^2;Comp=3.63 kips; fa=Comp/Area=6.12 ksi
Fe_bc=53.46 ksi; Fcr_bc=33.80 ksi
Fcr=33.80 ksi; Fa=0.6Fcr= 20.28 ksi
IRc=fa/Fa=6.118/20.282=0.300
Comp. Status: $0.30<=1.00 \ll-$ OK
CHECK TENSION (Eq. 4.2-2)
$\mathrm{ft}=$ Tens \times factor/Area $=(8.340 \times 1.000) / 0.594=14.040 \mathrm{ksi}$
$\mathrm{Ft}=0.6(\mathrm{Fy})=0.6^{*} 50.000=30.000 \mathrm{ksi}$
Ratio $=\mathrm{ft} / \mathrm{Ft}=14.04 / 30.00=0.47$
Status: $0.47<1.00 \ll--$ OK
CHECK COMBINED AXIAL AND BENDING STRESSES
AT THE CENTER PANEL
Mpp=0.131 in-K; Mpnl=0.079 in-K; bbc=1.25 in.; Ybc=0.36 in. Ixtc=0.09 in^4 fbu_pp $=1.33 \mathrm{ksi} . ;$ fbu_pnl $=0.32 \mathrm{ksi} . \mathrm{fa}=\mathrm{fau}=\mathrm{fc}=6.12 ; \mathrm{Abc}=0.59 \mathrm{in}{ }^{\wedge} 2$
Check Top Chord Center Panel for Combined Axial and Bending ASD
SJI Eqs 4.4-9 \& 4.4-10
$\mathrm{fa} /\left(\mathrm{Fa} _\right.$rc) $)=0.302 ; \mathrm{Cm}=1-0.67(\mathrm{fa} / \mathrm{Fex})=0.978$
IRbc_pnl=0.31
Status: $0.31<1.0 \ll-$ OK
AT THE PANEL POINT
|Rbc_pnl=0.248
Status: $0.25<1.0 \ll-$ OK

CHECK SHEAR CAPACITY OF CHORD (Ref. SJI Spec. 4.4)
 (Panel Point=Node=Joint).

Angle $b=1.25$ in, Angle $t=0.13$ in
OmegaW=1.500;fn=30.000;fn x OmegaW=20.000,Force $(P)=7.089 \mathrm{kips}$ $b=1.250 \mathrm{in} ; \mathrm{t}=0.125 \mathrm{in} ; \mathrm{ft}=\mathrm{P} / \mathrm{A}=11.934 \mathrm{ksi}$
Evaluation Node \#25; Shear $(\mathrm{V})=2.537 ; \mathrm{fv}=\mathrm{V} /\left(\mathrm{bt}^{*} 2^{*} \mathrm{t}\right)=8.118$; $\mathrm{fvmod}=10.075$
fvmod=(1/2)*(ft^2+4fv^2)^1/2=10.075 <= fn/OmegaW OK
Evaluation Node \#26; Shear $(\mathrm{V})=3.949 ; \mathrm{fv}=\mathrm{V} /\left(\mathrm{bt}{ }^{*} 2\right)=12.635 ; \mathrm{fvmod}=13.974$
fvmod $=(1 / 2)^{\star}\left(\mathrm{ft}^{\wedge} 2+4 \mathrm{fv}^{\wedge} 2\right)^{\wedge} 1 / 2=13.974<=\mathrm{fn} /$ OmegaW OK

DESIGN MEMBER

INPUT FORM (ASD) Revision SJI 100-2020
Member Number = 25
Serial = K
Member name $=$ Bottom chord right ext.
Type $=2$ Angle(1)
Section = $\lrcorner\llcorner$
Designation = L1 1/4×1 1/4x1/8 (SLV); A = 0.594^2; Fy=50 ksi
Reinforcement = NA;
Span design = 260.00 in
Lenght Member $=4^{\prime \prime}=0.333 \mathrm{ft} .=4.00 \mathrm{in}$.
Tension \& Compression Factor Design $=1.000$
Max. Code Check Ratio $=1.00$
Ω (Omega) $=1.67=1 / 1.67=0.6$; Spec. Section 4.2.3 Eq. 4.2
Omega Welding $=2.00$ Ref. SJI Spec 4.2.3.4
Min. Thicknees Material $=1 / 8^{\prime \prime}=0.125 \mathrm{in}$.
Weld Size(tw) $=1 / 8^{\prime \prime}=0.125 \mathrm{in} .=2.000$
Spc's of Bridging Lbry = 5.667 ft . (Bottom Bridging)

EFFECTIVE SLENDERNESS RATIOS TABLE 4.3-1

Maximun Slenderness Ratio (all = allowable)
Slenderness Ratio not excced $=240$

Data Member

Yield Stress: Fy=50 ksi
Modulus of Elasticity: E=29000 ksi
Area $=0.594$ in^2; $k=0.318$ inches
Inertia $x=0.088$ in^4, ly=0.308 in^4
$r x=0.38 \mathrm{in} ; r y=0.72 \mathrm{in} ; y=0.359 \mathrm{in}$
$\mathrm{Sx}=0.099 \mathrm{in} \wedge 3$
$r z=0.246 \mathrm{in} ;$ Qs $=1.000$
Spacing between chord angles $=0.500 \mathrm{in}=1 / 2^{\prime \prime}$
Combination; [SW=Self Weight; F=Factor]
COMB1 $=1.00 \times D L+1.00 \times L L+[S W$ F=1.00]
COMB2 $=$ Not Active or Null this Combination
COMB3 $=1.00 x L L+[S W$ F=1.00]
COMB4 $=0.60 x D L+1.00 x \mathrm{UP}+[\mathrm{SW}$ F=0.60]
Summary Combination Maximun Results

COMB	T. FORCE	C. FORCE	SHEAR	MOM(Mi)	MOM(Me)
	Kips	Kips	Kips	K-in	K-in
COMB1	0.000	0.000	0.001	0.001	0.000
COMB2	0.000	0.000	0.000	0.001	0.000
COMB3	0.000	0.000	0.001	0.001	0.000
COMB4	0.000	0.000	0.000	0.001	0.000

Max. Local Shear $(\mathrm{V})=0.000507$ Kips; Location in COMB3
Max. Moment $(\mathrm{Me})=0.000000$ K-ft; Location in COMB4
Max. Moment (Mi) $=0.000113$ K-ft; Location in COMB3
Max. Tension $=0.000$ Kips; Location in COMB4
Max. Compresion $=0.000$ Kips; Location in COMB4
Original COMPRESION = NOT (Use for internal information only)
Max. Axial Force Top \& Bottom Chord Local
Max. Compr (top chord) force = 15.790 Kips in Member \#7; Comb1 Max. Tension (top chord) force = 6.361 Kips in Member \#7; Comb4 Max. Compr (Bottom chord) force $=6.363$ Kips in Member \#20; Comb4 Max. Tension (Bottom chord) force $=15.790$ Kips in Member \#20; Comb1
S.R. $x=\left(L^{*} 12\right) / r x=\left(0.333^{*} 12\right) / 0.385=10.392$
S.R. $z=\left(L z^{*} 12\right) / r z=\left(0.333^{*} 12\right) / 0.246=16.260$

SLRbc $=$ Control $=94.387$

CHECK SHEAR CAPACITY OF CHORD (Ref. SJI Spec. 4.4)
 (Panel Point=Node=Joint).

Angle $\mathrm{b}=1.25 \mathrm{in}$, Angle $\mathrm{t}=0.13$ in
OmegaW $=1.500 ; \mathrm{fn}=30.000 ; \mathrm{fn} \times$ OmegaW $=20.000$,Force $(\mathrm{P})=0.000 \mathrm{kips}$ $\mathrm{b}=1.250 \mathrm{in} ; \mathrm{t}=0.125 \mathrm{in} ; \mathrm{ft}=\mathrm{P} / \mathrm{A}=0.000 \mathrm{ksi}$
Evaluation Node \#26; Shear $(\mathrm{V})=3.949 ; f v=\mathrm{V} /\left(\mathrm{bt}^{*} 2^{*} \mathrm{t}\right)=12.635$; fvmod=12.635
fvmod=(1/2)*(ft^2+4fv^2)^1/2=12.635 <= fn/OmegaW OK

CHECK MODULAR SECTION (S) Verification

Using Max. Moment
$\mathrm{S}=(\mathrm{M}) / \mathrm{Fb}=(0.001) / 30.000=0.000 \mathrm{in}$ ^3
$S=0.000$ in^3; Sx= 0.099 in^3
Ratio $=S / S x=0.000 / 0.099=0.000$
Status: $0.00<1.00 \ll-$ OK

DESIGN MEMBER

INPUT FORM (ASD) Revision SJI 100-2020
Member Number = 26
Serial $=\mathrm{K}$
Member name = Left end web member
Type = Single(2)
Section = 0
Designation $=\mathrm{R} 7 / 8 ; \mathrm{A}=0.601^{\wedge} 2 ; \mathrm{Fy}=50 \mathrm{ksi}$
Reinforcement = NA;
Span design = 260.00 in
Lenght Member $=2^{\prime}-109 / 16^{\prime \prime}=2.880 \mathrm{ft}$. $=34.56 \mathrm{in}$.
Tension \& Compression Factor Design $=1.000$
Max. Code Check Ratio $=1.00$
Ω (Omega) $=1.67=1 / 1.67=0.6$; Spec. Section 4.2.3 Eq. 4.2
Omega Welding $=2.00$ Ref. SJI Spec 4.2.3.4
Min. Thicknees Material $=1 / 8^{\prime \prime}=0.125 \mathrm{in}$.
Weld Size(tw) $=1 / 8^{\prime \prime}=0.215 \mathrm{in} .=3.440$ (Weld Throat for Rod)

EFFECTIVE SLENDERNESS RATIOS TABLE 4.3-1

Maximun Slenderness Ratio (all = allowable)
For Compression member Slenderness Ratio(L/r)all = 200
For Tension member Slenderness Ratio(L/r)all = 240

Data Member

Yield Stress: Fy=50 ksi
Modulus of Elasticity: E=29000 ksi
Area $=0.601$ in^2; $\mathrm{k}=0.318$ inches
Inertia $x=0.029$ in $^{\wedge} 4, \mathrm{ly}=0.313 \mathrm{in}^{\wedge} 4$
$r x=0.22 \mathrm{in} ; r y=0.22 \mathrm{in} ; \mathrm{y}=0.438 \mathrm{in}$
$\mathrm{rz}=0.219 \mathrm{in} ;$ Qs $=1.000$
Spacing between chord angles $=0.500$ in $=1 / 2^{\prime \prime}$
Combination; [SW=Self Weight; F=Factor]
COMB1 $=1.00 x D L+1.00 x L L+[S W ~ F=1.00]$
COMB2 $=$ Not Active or Null this Combination
COMB3 $=1.00 x L L+[$ SW F=1.00]
COMB4 $=0.60 \times D L+1.00 \times U P+[S W F=0.60]$

Summary Combination Maximun Results

COMB	T. FORCE Kips	C. FORCE Kips	SHEAR Kips	MOM(Mi) K-in	MOM(Me) K-in
COMB1	7.932	0.000	0.000	0.000	0.000
COMB2	0.000	0.000	0.000	0.000	0.000
COMB3	6.583	0.000	0.000	0.000	0.000
COMB4	0.000	3.540	0.000	0.000	0.000

Max. Local Shear $(\mathrm{V})=0.000000$ Kips; Location in COMB4
Max. Moment $(\mathrm{Me})=0.000000 \mathrm{~K}$-ft; Location in COMB4
Max. Moment $(\mathrm{Mi})=0.000000$ K-ft; Location in COMB4
Max. Tension = 7.932 Kips; Location in COMB1
Max. Compresion = 3.540 Kips; Location in COMB4
Original COMPRESION = YES (Use for internal information only)

Location of Reaction of Force

Max. Reation (Comb. \#4)= -1.894 Kips-Use in web member w/Tension
Max. Reation (Comb. \#1) $=4.207$ Kips-Use in web member w/Compr.

For Web Member Check 25\% of Reaction.

Comp=3.540; Tens=7.932; seno = 0.498; Max. 25\% Reaction
Vertical Shear(Tens) $=3.949$; Vertical Shear(Comp) $=1.762$
Max. Tension = 7.932 Kips; (Not Change)
Max. Compresion = 3.540 Kips; (Not Change)

Slenderness Ratio

k For Calculation Fcr per Table 4.3-1
(Comp.) $\mathrm{Kx}=0.75$; $\mathrm{Ky}=0.80$; Kz=0.00

Max. Axial Force Top \& Bottom Chord Local

Max. Compr (top chord) force $=15.790$ Kips in Member \#7; Comb1
Max. Tension (top chord) force = 6.361 Kips in Member \#7; Comb4
Max. Compr (Bottom chord) force = 6.363 Kips in Member \#20; Comb4
Max. Tension (Bottom chord) force $=15.790$ Kips in Member \#20; Comb1

CHECK SLENDERNESS RATIOS

S.R. $x=\left(L^{*} 12\right) / r x=\left(2.880^{*} 12\right) / 0.219=158.000$
S.R. $y=\left(L^{*} 12\right) / r y=\left(2.880^{*} 12\right) / 0.219=158.000$
S.R. $z=\left(L^{*} 12\right) / r z=\left(2.880^{*} 12\right) / 0.219=158.000$

Control $=158.000$
Comp. Ratio $=$ Control/200 $=158.00 / 200=0.79$
Comp. Status: $0.79<1.00 \ll--$ OK
Tens. Ratio $=$ Contro $/ 240=158.00 / 240=0.66$
Tens. Status: 0.66 < 1.00 <<-- OK

CHECK COMPRESSION (4.2-4)

Shim, fillers or ties: NOT
S.R. $x=\left(K x^{*} L^{*} 12\right) / r x=\left(0.750^{*} 2.88^{\star} 12\right) / 0.219=118.500$
S.R. $y=\left(k y^{*} L^{*} 12\right) / r y=\left(0.800^{*} 2.88^{*} 12\right) / 0.219=126.400$

SLRgov=126.40
Fy=50.00 ksi;
Area=0.60 in^2;Comp=3.54 kips; fa=Comp/Area=5.89 ksi
$\mathrm{Fe}=17.91 \mathrm{ksi} ; \mathrm{Fcr}=15.71 \mathrm{ksi}$
Fcr=15.71 ksi; Fa=0.6Fcr= 9.43 ksi
IRc=fa/Fa=5.887/9.427=0.620
Comp. Status: 0.62 <= 1.00 <<-- OK

CHECK TENSION (Eq. 4.2-2)

$\mathrm{ft}=$ Tens x factor/Area $=(7.932 \times 1.000) / 0.601=13.191 \mathrm{ksi}$
$\mathrm{Ft}=0.6(\mathrm{Fy})=0.6 \star 50.000=30.000 \mathrm{ksi}$
Ratio $=\mathrm{ft} / \mathrm{Ft}=13.19 / 30.00=0.44$
Status: $0.44<=0.90^{* * *} \ll--$ OK
${ }^{* * *}$ Refer to Section 1.2B for applicationb of and the requirement for the use of the 0.90 Stress Interaction
Ratio for design check of first end web.

WELDING WEB MEMBER

Strength of E70XX electrodes: Fexx=70 ksi
Force=7.932; weld size = 1/8"
Lenght weld $=$ Force $\times \mathrm{OMEGAw} /\left(2^{*}\right.$ Fnw x tef $)$
Lenght weld $=7.932 \times 2.0 /(2 \times 42.000 .215)=0.878$ in.
Use: $1 / 8$ " ; 2 inches Both end (total lenght) [But use 1 in . Min. each leg of each end]

CHECK ECCENTRICITY (4.5.4)

Woking point in both end: 0.0in. OK
This is important to fabrication.

DESIGN MEMBER

INPUT FORM (ASD) Revision SJI 100-2020
Member Number = 27
Serial $=\mathrm{K}$
Member name = Aux. left or SV web member
Type $=$ Single(2)
Section = 0
Designation $=\mathrm{R} 1 / 2 ; \mathrm{A}=0.196^{\wedge} 2 ; \mathrm{Fy}=50 \mathrm{ksi}$
Reinforcement = NA;
Span design = 260.00 in
Lenght Member = $1^{\prime}-103 / 16$ " $=1.849 \mathrm{ft}$. $=22.19 \mathrm{in}$.
Tension \& Compression Factor Design $=1.000$
Max. Code Check Ratio $=1.00$
Ω (Omega) $=1.67=1 / 1.67=0.6$; Spec. Section 4.2.3 Eq. 4.2
Omega Welding $=2.00$ Ref. SJI Spec 4.2.3.4
Min. Thicknees Material $=1 / 8^{\prime \prime}=0.125 \mathrm{in}$.
Weld Size(tw) $=1 / 8^{\prime \prime}=0.170 \mathrm{in} .=2.720$ (Weld Throat for Rod)

EFFECTIVE SLENDERNESS RATIOS TABLE 4.3-1

Maximun Slenderness Ratio (all = allowable)
For Compression member Slenderness Ratio(L/r)all = 200
For Tension member Slenderness Ratio(L/r)all = 240

Data Member

Yield Stress: Fy=50 ksi
Modulus of Elasticity: E=29000 ksi
Area $=0.196$ in^2; $\mathrm{k}=0.318$ inches
Inertia $x=0.003$ in^4, ly $=0.052$ in^4
$r x=0.13 \mathrm{in} ; r y=0.13 \mathrm{in} ; \mathrm{y}=0.250 \mathrm{in}$
$r z=0.125 \mathrm{in} ;$ Qs $=1.000$
Spacing between chord angles $=0.500$ in $=1 / 2^{\prime \prime}$
Combination; [SW=Self Weight; F=Factor]
COMB1 $=1.00 x D L+1.00 x L L+[S W ~ F=1.00]$
COMB2 $=$ Not Active or Null this Combination
COMB3 $=1.00 \times L L+[$ SW F=1.00]
COMB4 $=0.60 \times D L+1.00 \times U P+[S W F=0.60]$

Summary Combination Maximun Results

COMB	T. FORCE Kips	C. FORCE Kips	SHEAR Kips	MOM(Mi) K-in	MOM(Me) K-in
COMB1	0.000	0.761	0.000	0.000	0.000
COMB2	0.000	0.000	0.000	0.000	0.000
COMB3	0.000	0.630	0.000	0.000	0.000
COMB4	0.425	0.000	0.000	0.000	0.000

Max. Local Shear $(\mathrm{V})=0.000000$ Kips; Location in COMB4
Max. Moment $(\mathrm{Me})=0.000000 \mathrm{~K}$-ft; Location in COMB4
Max. Moment $(\mathrm{Mi})=0.000000$ K-ft; Location in COMB4
Max. Tension $=0.425$ Kips; Location in COMB4
Max. Compresion $=0.761$ Kips; Location in COMB1
Original COMPRESION = YES (Use for internal information only)

Location of Reaction of Force

Max. Reation (Comb. \#4)= -1.894 Kips-Use in web member w/Tension
Max. Reation (Comb. \#1) $=4.207$ Kips-Use in web member w/Compr.

Slenderness Ratio

k For Calculation Fcr per Table 4.3-1
(Comp.) $\mathrm{Kx}=0.75$; $\mathrm{Ky}=0.90$; $\mathrm{Kz}=0.00$

Max. Axial Force Top \& Bottom Chord Local

Max. Compr (top chord) force = 15.790 Kips in Member \#7; Comb1 Max. Tension (top chord) force $=6.361$ Kips in Member \#7; Comb4 Max. Compr (Bottom chord) force $=6.363$ Kips in Member \#20; Comb4 Max. Tension (Bottom chord) force $=15.790$ Kips in Member \#20; Comb1

For Interior Vertical Member.

gravity load +1/2 of 1.0\% of Max. Top Chord Axial Force
Tension $=\mathrm{g}+1 / 2\left(1 \%{ }^{*}\right.$ Pep $)=$
Tension $=0.425$ Kips $+0.5(0.01 * 3.070100$ Kips $)=0.440$ Kips
Max. Tension $=0.440 \mathrm{Kips} ;($ Change $)$
Compresion $=g+1 / 2(1 \% *$ Pep $)=$
Compresion $=0.761$ Kips $+0.5\left(0.01^{*} 15.789752\right.$ Kips $)=0.796$ Kips
Max. Compresion = 0.840 Kips;(Change)

CHECK SLENDERNESS RATIOS

S.R. $x=\left(L^{*} 12\right) / r x=\left(1.849^{*} 12\right) / 0.125=177.500$
S.R. $y=\left(L^{*} 12\right) / r y=\left(1.849^{*} 12\right) / 0.125=177.500$
S.R. $z=\left(L^{*} 12\right) / r z=\left(1.849^{*} 12\right) / 0.125=177.500$

Control $=177.500$
Comp. Ratio $=$ Control/200 $=177.50 / 200=0.89$
Comp. Status: $0.89<1.00 \ll--$ OK
Tens. Ratio $=$ Control/ $240=177.50 / 240=0.74$
Tens. Status: 0.74 < $1.00 \ll-$ OK

CHECK COMPRESSION (4.2-4)

Shim, fillers or ties: NOT
S.R. $x=\left(K x^{*} L^{*} 12\right) / r x=\left(0.750^{*} 1.85^{*} 12\right) / 0.125=133.125$
S.R. $y=\left(k y^{*} L^{*} 12\right) / r y=\left(0.900^{*} 1.85^{*} 12\right) / 0.125=159.750$

SLRgov=159.75
Fy=50.00 ksi;
Area=0.20 in^2;Comp=0.84 kips; fa=Comp/Area=4.28 ksi
$\mathrm{Fe}=11.22 \mathrm{ksi}$; Fcr=9.84 ksi
Fcr $=9.84 \mathrm{ksi} ;$ Fa=0.6Fcr= $=5.90 \mathrm{ksi}$
IRc=fa/Fa=4.279/5.902=0.730
Comp. Status: 0.73 <= 1.00 <<-- OK

CHECK TENSION (Eq. 4.2-2)

$\mathrm{ft}=$ Tens \times factor/Area $=(0.440 \times 1.000) / 0.196=2.242 \mathrm{ksi}$
$\mathrm{Ft}=0.6(\mathrm{Fy})=0.6 * 50.000=30.000 \mathrm{ksi}$
Ratio $=\mathrm{ft} / \mathrm{Ft}=2.24 / 30.00=0.07$
Status: $0.07<1.00 \ll-$ OK

WELDING WEB MEMBER

Strength of E70XX electrodes: Fexx=70 ksi
Force $=0.840$; weld size $=1 / 8^{\prime \prime}$
Lenght weld $=$ Force \times OMEGAw/(2 * Fnw x tef)
Lenght weld $=0.840 \times 2.0 /(2 \times 42.000 .170)=0.118 \mathrm{in}$.
Use: $1 / 8^{\prime \prime} ; 2$ inches Both end (total lenght) [But use 1 in . Min. each leg of each end]
CHECK ECCENTRICITY (4.5.4)
Woking point in both end: 0.0in. OK
This is important to fabrication.

DESIGN MEMBER

INPUT FORM (ASD) Revision SJI 100-2020
Member Number = 28
Serial $=\mathrm{K}$
Member name $=$ Interior First web member
Type = Single(2)
Section = 0
Designation $=\mathrm{R} 3 / 4 ; \mathrm{A}=0.442^{\wedge} 2 ; \mathrm{Fy}=50 \mathrm{ksi}$
Reinforcement = NA;
Span design = 260.00 in
Lenght Member $=1^{\prime}-715 / 16^{\prime \prime}=1.661 \mathrm{ft}$. $=19.94 \mathrm{in}$.
Tension \& Compression Factor Design $=1.000$
Max. Code Check Ratio $=1.00$
Ω (Omega) $=1.67=1 / 1.67=0.6$; Spec. Section 4.2.3 Eq. 4.2
Omega Welding $=2.00$ Ref. SJI Spec 4.2.3.4
Min. Thicknees Material $=1 / 8^{\prime \prime}=0.125 \mathrm{in}$.
Weld Size(tw) $=1 / 8^{\prime \prime}=0.200 \mathrm{in} .=3.200$ (Weld Throat for Rod)

EFFECTIVE SLENDERNESS RATIOS TABLE 4.3-1

Maximun Slenderness Ratio (all = allowable)
For Compression member Slenderness Ratio(L/r)all = 200
For Tension member Slenderness Ratio(L/r)all = 240

Data Member

Yield Stress: Fy=50 ksi
Modulus of Elasticity: E=29000 ksi
Area $=0.442$ in^2; $\mathrm{k}=0.318$ inches
Inertia $x=0.016$ in $^{\wedge} 4, \mathrm{ly}=0.188$ in $^{\wedge} 4$
$r x=0.19 \mathrm{in} ; r y=0.19 \mathrm{in} ; \mathrm{y}=0.375 \mathrm{in}$
$\mathrm{rz}=0.188 \mathrm{in} ; \mathrm{Qs}=1.000$
Spacing between chord angles $=0.500$ in $=1 / 2^{\prime \prime}$
Combination; [SW=Self Weight; F=Factor]
COMB1 $=1.00 x D L+1.00 x L L+[S W ~ F=1.00]$
COMB2 $=$ Not Active or Null this Combination
COMB3 $=1.00 \times L L+[$ SW F=1.00]
COMB4 $=0.60 \times D L+1.00 \times U P+[S W F=0.60]$

Summary Combination Maximun Results

COMB	T. FORCE Kips	C. FORCE Kips	SHEAR Kips	MOM(Mi) K-in	MOM(Me) K-in
COMB1	0.000	3.865	0.000	0.000	0.000
COMB2	0.000	0.000	0.000	0.000	0.000
COMB3	0.000	3.208	0.000	0.000	0.000
COMB4	1.657	0.000	0.000	0.000	0.000

Max. Local Shear $(\mathrm{V})=0.000000$ Kips; Location in COMB4
Max. Moment $(\mathrm{Me})=0.000000 \mathrm{~K}$-ft; Location in COMB4
Max. Moment $(\mathrm{Mi})=0.000000$ K-ft; Location in COMB4
Max. Tension = 1.657 Kips; Location in COMB4
Max. Compresion = 3.865 Kips; Location in COMB1
Original COMPRESION = YES (Use for internal information only)

Location of Reaction of Force

Max. Reation (Comb. \#4) $=-1.894$ Kips-Use in web member w/Tension
Max. Reation (Comb. \#1) $=4.207$ Kips-Use in web member w/Compr.

For Web Member Check 25\% of Reaction.

Comp=3.865; Tens=1.657; seno = 0.865; Max. 25\% Reaction
Vertical Shear(Tens) $=1.433$; Vertical Shear(Comp) $=3.343$
Max. Tension = 1.657 Kips; (Not Change)
Max. Compresion = 3.865 Kips; (Not Change)

Slenderness Ratio

k For Calculation Fcr per Table 4.3-1
(Comp.) Kx=0.75; Ky=0.90; Kz=0.00

Max. Axial Force Top \& Bottom Chord Local

Max. Compr (top chord) force $=15.790$ Kips in Member \#7; Comb1
Max. Tension (top chord) force = 6.361 Kips in Member \#7; Comb4
Max. Compr (Bottom chord) force = 6.363 Kips in Member \#20; Comb4
Max. Tension (Bottom chord) force $=15.790$ Kips in Member \#20; Comb1

CHECK SLENDERNESS RATIOS

S.R. $x=\left(L^{*} 12\right) / r x=\left(1.661^{*} 12\right) / 0.188=106.333$
S.R. $y=\left(L^{*} 12\right) / r y=\left(1.661^{*} 12\right) / 0.188=106.333$
S.R. $z=\left(L^{*} 12\right) / r z=\left(1.661^{*} 12\right) / 0.188=106.333$

Control $=106.333$
Comp. Ratio $=$ Control/200 $=106.33 / 200=0.53$
Comp. Status: $0.53<1.00 \ll-$ OK
Tens. Ratio $=$ Control/ $240=106.33 / 240=0.44$
Tens. Status: 0.44 < $1.00 \ll-$ OK

CHECK COMPRESSION (4.2-4)

Shim, fillers or ties: NOT
S.R. $x=\left(K x^{*} L^{*} 12\right) / r x=\left(0.750^{*} 1.66^{*} 12\right) / 0.188=79.750$
S.R. $y=\left(k y^{*} L^{*} 12\right) / r y=\left(0.900^{*} 1.66^{*} 12\right) / 0.188=95.700$

SLRgov=95.70
Fy=50.00 ksi;
Area=0.44 in^2;Comp=3.87 kips; fa=Comp/Area=8.75 ksi
Fe=31.25 ksi; Fcr=25.59 ksi
Fcr=25.59 ksi; Fa=0.6Fcr= 15.36 ksi
IRc=fa/Fa=8.750/15.357=0.570
Comp. Status: 0.57 <= 1.00 <<-- OK
CHECK TENSION (Eq. 4.2-2)
$\mathrm{ft}=$ Tens \times factor/Area $=(1.657 \times 1.000) / 0.442=3.751 \mathrm{ksi}$
$\mathrm{Ft}=0.6(\mathrm{Fy})=0.6 * 50.000=30.000 \mathrm{ksi}$
Ratio $=\mathrm{ft} / \mathrm{Ft}=3.75 / 30.00=0.13$
Status: $0.13<1.00 \ll-$ OK

WELDING WEB MEMBER

Strength of E70XX electrodes: Fexx=70 ksi
Force=3.865; weld size $=1 / 8^{\prime \prime}$
Lenght weld = Force \times OMEGAw/(2 * Fnw x tef)
Lenght weld $=3.865 \times 2.0 /(2 \times 42.000 .200)=0.460 \mathrm{in}$.
Use: $1 / 8$ " ; 2 inches Both end (total lenght) [But use 1 in . Min. each leg of each end]
CHECK ECCENTRICITY (4.5.4)
Woking point in both end: 0.0in. OK
This is important to fabrication.

DESIGN MEMBER

INPUT FORM (ASD) Revision SJI 100-2020
Member Number = 29
Serial $=\mathrm{K}$
Member name = Interior web member
Type = Single(2)
Section = 0
Designation $=\mathrm{R} 3 / 4 ; \mathrm{A}=0.442^{\wedge} 2 ; \mathrm{Fy}=50 \mathrm{ksi}$
Reinforcement = NA;
Span design = 260.00 in
Lenght Member = $1^{\prime}-715 / 16^{\prime \prime}=1.661 \mathrm{ft}$. $=19.94 \mathrm{in}$.
Tension \& Compression Factor Design $=1.000$
Max. Code Check Ratio $=1.00$
Ω (Omega) $=1.67=1 / 1.67=0.6$; Spec. Section 4.2.3 Eq. 4.2
Omega Welding $=2.00$ Ref. SJI Spec 4.2.3.4
Min. Thicknees Material $=1 / 8^{\prime \prime}=0.125 \mathrm{in}$.
Weld Size(tw) $=1 / 8^{\prime \prime}=0.200 \mathrm{in} .=3.200$ (Weld Throat for Rod)

EFFECTIVE SLENDERNESS RATIOS TABLE 4.3-1

Maximun Slenderness Ratio (all = allowable)
For Compression member Slenderness Ratio(L/r)all = 200
For Tension member Slenderness Ratio(L/r)all = 240

Data Member

Yield Stress: Fy=50 ksi
Modulus of Elasticity: E=29000 ksi
Area $=0.442$ in^2; $\mathrm{k}=0.318$ inches
Inertia $x=0.016$ in $^{\wedge} 4, \mathrm{ly}=0.188$ in $^{\wedge} 4$
$r x=0.19 \mathrm{in} ; r y=0.19 \mathrm{in} ; \mathrm{y}=0.375 \mathrm{in}$
$\mathrm{rz}=0.188 \mathrm{in} ; \mathrm{Qs}=1.000$
Spacing between chord angles $=0.500$ in $=1 / 2^{\prime \prime}$
Combination; [SW=Self Weight; F=Factor]
COMB1 $=1.00 x D L+1.00 x L L+[S W ~ F=1.00]$
COMB2 $=$ Not Active or Null this Combination
COMB3 $=1.00 \times L L+[$ SW F=1.00]
COMB4 $=0.60 \times D L+1.00 \times U P+[S W F=0.60]$

Summary Combination Maximun Results

COMB	T. FORCE Kips	C. FORCE Kips	SHEAR Kips	MOM(Mi) K-in	MOM(Me) K-in
COMB1	2.934	0.000	0.000	0.000	0.000
COMB2	0.000	0.000	0.000	0.000	0.000
COMB3	2.436	0.000	0.000	0.000	0.000
COMB4	0.000	1.163	0.000	0.000	0.000

Max. Local Shear $(\mathrm{V})=0.000000$ Kips; Location in COMB4
Max. Moment $(\mathrm{Me})=0.000000 \mathrm{~K}$-ft; Location in COMB4
Max. Moment (Mi) $=0.000000$ K-ft; Location in COMB4
Max. Tension = 2.934 Kips; Location in COMB1
Max. Compresion = 1.163 Kips; Location in COMB4
Original COMPRESION = YES (Use for internal information only)

Location of Reaction of Force

Max. Reation (Comb. \#4)= -1.894 Kips-Use in web member w/Tension
Max. Reation (Comb. \#1) $=4.207$ Kips-Use in web member w/Compr.

For Web Member Check 25\% of Reaction.

Comp=1.163; Tens=2.934; seno = 0.865; Max. 25\% Reaction
Vertical Shear(Tens) $=2.537$; Vertical Shear(Comp) $=1.006$
Max. Tension = 2.934 Kips; (Not Change)
Max. Comp = 1.052 Kips (Change)

Slenderness Ratio

k For Calculation Fcr per Table 4.3-1
(Comp.) Kx=0.75; Ky=0.90; Kz=0.00

Max. Axial Force Top \& Bottom Chord Local

Max. Compr (top chord) force $=15.790$ Kips in Member \#7; Comb1
Max. Tension (top chord) force $=6.361$ Kips in Member \#7; Comb4
Max. Compr (Bottom chord) force = 6.363 Kips in Member \#20; Comb4
Max. Tension (Bottom chord) force $=15.790$ Kips in Member \#20; Comb1

CHECK SLENDERNESS RATIOS

S.R. $x=\left(L^{*} 12\right) / r x=\left(1.661^{*} 12\right) / 0.188=106.333$
S.R. $y=\left(L^{*} 12\right) / r y=\left(1.661^{*} 12\right) / 0.188=106.333$
S.R. $z=\left(L^{*} 12\right) / r z=\left(1.661^{*} 12\right) / 0.188=106.333$

Control $=106.333$
Comp. Ratio $=$ Control/200 $=106.33 / 200=0.53$
Comp. Status: $0.53<1.00 \ll-$ OK
Tens. Ratio $=$ Control/ $240=106.33 / 240=0.44$
Tens. Status: 0.44 < $1.00 \ll-$ OK

CHECK COMPRESSION (4.2-4)

Shim, fillers or ties: NOT
S.R. $x=\left(K x^{*} L^{*} 12\right) / r x=\left(0.750^{*} 1.66^{*} 12\right) / 0.188=79.750$
S.R. $y=\left(k y^{*} L^{*} 12\right) / r y=\left(0.900^{*} 1.66^{*} 12\right) / 0.188=95.700$

SLRgov=95.70
Fy=50.00 ksi;
Area=0.44 in^2;Comp=1.05 kips; fa=Comp/Area=2.38 ksi
$\mathrm{Fe}=31.25 \mathrm{ksi} ; \mathrm{Fcr}=25.59 \mathrm{ksi}$
Fcr=25.59 ksi; Fa=0.6Fcr= 15.36 ksi
IRc=fa/Fa=2.381/15.357=0.160
Comp. Status: 0.16 <= 1.00 <<-- OK
CHECK TENSION (Eq. 4.2-2)
$\mathrm{ft}=$ Tens \times factor/Area $=(2.934 \times 1.000) / 0.442=6.640 \mathrm{ksi}$
$\mathrm{Ft}=0.6(\mathrm{Fy})=0.6 * 50.000=30.000 \mathrm{ksi}$
Ratio $=\mathrm{ft} / \mathrm{Ft}=6.64 / 30.00=0.22$
Status: $0.22<1.00$ <<-- OK

WELDING WEB MEMBER

Strength of E70XX electrodes: Fexx=70 ksi
Force=2.934; weld size $=1 / 8^{\prime \prime}$
Lenght weld $=$ Force \times OMEGAw/(2 * Fnw x tef)
Lenght weld $=2.934 \times 2.0 /(2 \times 42.000 .200)=0.349 \mathrm{in}$.
Use: $1 / 8$ " ; 2 inches Both end (total lenght) [But use 1 in . Min. each leg of each end]
CHECK ECCENTRICITY (4.5.4)
Woking point in both end: 0.0in. OK
This is important to fabrication.

DESIGN MEMBER

INPUT FORM (ASD) Revision SJI 100-2020
Member Number = 30
Serial $=\mathrm{K}$
Member name = Interior web member
Type = Single(2)
Section = 0
Designation $=\mathrm{R} 5 / 8 ; \mathrm{A}=0.307^{\wedge} 2 ; \mathrm{Fy}=50 \mathrm{ksi}$
Reinforcement = NA;
Span design = 260.00 in
Lenght Member = $1^{\prime}-715 / 16^{\prime \prime}=1.661 \mathrm{ft}$. $=19.94 \mathrm{in}$.
Tension \& Compression Factor Design $=1.000$
Max. Code Check Ratio = 1.00
Ω (Omega) $=1.67=1 / 1.67=0.6$; Spec. Section 4.2.3 Eq. 4.2
Omega Welding $=2.00$ Ref. SJI Spec 4.2.3.4
Min. Thicknees Material $=1 / 8^{\prime \prime}=0.125 \mathrm{in}$.
Weld Size(tw) $=1 / 8^{\prime \prime}=0.185 \mathrm{in} .=2.960$ (Weld Throat for Rod)

EFFECTIVE SLENDERNESS RATIOS TABLE 4.3-1

Maximun Slenderness Ratio (all = allowable)
For Compression member Slenderness Ratio(L/r)all = 200
For Tension member Slenderness Ratio(L/r)all = 240

Data Member

Yield Stress: Fy=50 ksi
Modulus of Elasticity: E=29000 ksi
Area $=0.307$ in^2; $\mathrm{k}=0.318$ inches
Inertia $x=0.007$ in $^{\wedge} 4, \mathrm{ly}=0.105 \mathrm{in}^{\wedge} 4$
$r x=0.16 \mathrm{in} ; r y=0.16 \mathrm{in} ; \mathrm{y}=0.313 \mathrm{in}$
$\mathrm{rz}=0.156 \mathrm{in} ; \mathrm{Qs}=1.000$
Spacing between chord angles $=0.500$ in $=1 / 2^{\prime \prime}$
Combination; [SW=Self Weight; F=Factor]
COMB1 $=1.00 x D L+1.00 x L L+[S W ~ F=1.00]$
COMB2 $=$ Not Active or Null this Combination
COMB3 $=1.00 \times L L+[$ SW F=1.00]
COMB4 $=0.60 \times D L+1.00 \times U P+[S W F=0.60]$

Summary Combination Maximun Results

COMB	T. FORCE Kips	C. FORCE Kips	SHEAR Kips	MOM(Mi) K-in	MOM(Me) K-in
COMB1	0.000	2.933	0.000	0.000	0.000
COMB2	0.000	0.000	0.000	0.000	0.000
COMB3	0.000	2.434	0.000	0.000	0.000
COMB4	1.171	0.000	0.000	0.000	0.000

Max. Local Shear $(\mathrm{V})=0.000000$ Kips; Location in COMB4
Max. Moment $(\mathrm{Me})=0.000000 \mathrm{~K}$-ft; Location in COMB4
Max. Moment $(\mathrm{Mi})=0.000000$ K-ft; Location in COMB4
Max. Tension = 1.171 Kips ; Location in COMB4
Max. Compresion = 2.933 Kips; Location in COMB1
Original COMPRESION = YES (Use for internal information only)

Location of Reaction of Force

Max. Reation (Comb. \#4)= -1.894 Kips-Use in web member w/Tension
Max. Reation (Comb. \#1) $=4.207$ Kips-Use in web member w/Compr.

For Web Member Check 25\% of Reaction.

Comp=2.933; Tens=1.171; seno = 0.865; Max. 25\% Reaction
Vertical Shear(Tens) $=1.012$; Vertical Shear(Comp) $=2.536$
Max. Tension = 1.171 Kips;(Not Change)
Max. Compresion = 2.933 Kips; (Not Change)

Slenderness Ratio

k For Calculation Fcr per Table 4.3-1
(Comp.) Kx=0.75; Ky=0.90; Kz=0.00

Max. Axial Force Top \& Bottom Chord Local

Max. Compr (top chord) force $=15.790$ Kips in Member \#7; Comb1
Max. Tension (top chord) force = 6.361 Kips in Member \#7; Comb4
Max. Compr (Bottom chord) force = 6.363 Kips in Member \#20; Comb4
Max. Tension (Bottom chord) force $=15.790$ Kips in Member \#20; Comb1

CHECK SLENDERNESS RATIOS

S.R. $x=\left(L^{*} 12\right) / r x=\left(1.661^{*} 12\right) / 0.156=127.600$
S.R. $y=\left(L^{*} 12\right) / r y=\left(1.661^{*} 12\right) / 0.156=127.600$
S.R. $z=\left(L^{*} 12\right) / r z=\left(1.661^{*} 12\right) / 0.156=127.600$

Control $=127.600$
Comp. Ratio $=$ Control/200 $=127.60 / 200=0.64$
Comp. Status: $0.64<1.00 \ll--$ OK
Tens. Ratio $=$ Control/ $240=127.60 / 240=0.53$
Tens. Status: $0.53<1.00 \ll-$ OK

CHECK COMPRESSION (4.2-4)

Shim, fillers or ties: NOT
S.R. $x=\left(K x^{*} L^{*} 12\right) / r x=\left(0.750^{*} 1.66^{*} 12\right) / 0.156=95.700$
S.R. $y=\left(k y^{*} L^{*} 12\right) / r y=\left(0.900^{*} 1.66^{*} 12\right) / 0.156=114.840$

SLRgov=114.84
Fy=50.00 ksi;
Area=0.31 in^2;Comp=2.93 kips; fa=Comp/Area=9.56 ksi
$\mathrm{Fe}=21.70 \mathrm{ksi} ; \mathrm{Fcr}=19.03 \mathrm{ksi}$
Fcr= $19.03 \mathrm{ksi} ;$ Fa=0.6Fcr= 11.42 ksi
IRc=fa/Fa=9.560/11.420=0.840
Comp. Status: 0.84 <= 1.00 <<-- OK
CHECK TENSION (Eq. 4.2-2)
$\mathrm{ft}=$ Tens \times factor/Area $=(1.171 \times 1.000) / 0.307=3.815 \mathrm{ksi}$
$\mathrm{Ft}=0.6(\mathrm{Fy})=0.6 * 50.000=30.000 \mathrm{ksi}$
Ratio $=\mathrm{ft} / \mathrm{Ft}=3.82 / 30.00=0.13$
Status: $0.13<1.00 \ll-$ OK

WELDING WEB MEMBER

Strength of E70XX electrodes: Fexx=70 ksi
Force=2.933; weld size $=1 / 8^{\prime \prime}$
Lenght weld $=$ Force \times OMEGAw/(2 * Fnw x tef)
Lenght weld $=2.933 \times 2.0 /(2 \times 42.000 .185)=0.377 \mathrm{in}$.
Use: $1 / 8$ " ; 2 inches Both end (total lenght) [But use 1 in . Min. each leg of each end]
CHECK ECCENTRICITY (4.5.4)
Woking point in both end: 0.0in. OK
This is important to fabrication.

DESIGN MEMBER

INPUT FORM (ASD) Revision SJI 100-2020
Member Number = 31
Serial $=\mathrm{K}$
Member name = Interior web member
Type = Single(2)
Section = 0
Designation $=\mathrm{R} 5 / 8 ; \mathrm{A}=0.307^{\wedge} 2 ; \mathrm{Fy}=50 \mathrm{ksi}$
Reinforcement = NA;
Span design = 260.00 in
Lenght Member $=1^{\prime}-715 / 16^{\prime \prime}=1.661 \mathrm{ft}$. $=19.94 \mathrm{in}$.
Tension \& Compression Factor Design $=1.000$
Max. Code Check Ratio = 1.00
Ω (Omega) $=1.67=1 / 1.67=0.6$; Spec. Section 4.2.3 Eq. 4.2
Omega Welding $=2.00$ Ref. SJI Spec 4.2.3.4
Min. Thicknees Material $=1 / 8^{\prime \prime}=0.125 \mathrm{in}$.
Weld Size(tw) $=1 / 8^{\prime \prime}=0.185 \mathrm{in} .=2.960$ (Weld Throat for Rod)

EFFECTIVE SLENDERNESS RATIOS TABLE 4.3-1

Maximun Slenderness Ratio (all = allowable)
For Compression member Slenderness Ratio(L/r)all = 200
For Tension member Slenderness Ratio(L/r)all = 240

Data Member

Yield Stress: Fy=50 ksi
Modulus of Elasticity: E=29000 ksi
Area $=0.307$ in^2; $\mathrm{k}=0.318$ inches
Inertia $x=0.007$ in $^{\wedge} 4, \mathrm{ly}=0.105 \mathrm{in}^{\wedge} 4$
$r x=0.16 \mathrm{in} ; r y=0.16 \mathrm{in} ; \mathrm{y}=0.313 \mathrm{in}$
$\mathrm{rz}=0.156 \mathrm{in} ; \mathrm{Qs}=1.000$
Spacing between chord angles $=0.500$ in $=1 / 2^{\prime \prime}$
Combination; [SW=Self Weight; F=Factor]
COMB1 $=1.00 x D L+1.00 x L L+[S W ~ F=1.00]$
COMB2 $=$ Not Active or Null this Combination
COMB3 $=1.00 \times L L+[$ SW F=1.00]
COMB4 $=0.60 \times D L+1.00 \times U P+[S W F=0.60]$

Summary Combination Maximun Results

COMB	T. FORCE Kips	C. FORCE Kips	SHEAR Kips	MOM(Mi) K-in	MOM(Me) K-in
COMB1	2.251	0.000	0.000	0.000	0.000
COMB2	0.000	0.000	0.000	0.000	0.000
COMB3	1.869	0.000	0.000	0.000	0.000
COMB4	0.000	0.793	0.000	0.000	0.000

Max. Local Shear $(\mathrm{V})=0.000000$ Kips; Location in COMB4
Max. Moment $(\mathrm{Me})=0.000000 \mathrm{~K}$-ft; Location in COMB4
Max. Moment $(\mathrm{Mi})=0.000000$ K-ft; Location in COMB4
Max. Tension = 2.251 Kips; Location in COMB1
Max. Compresion $=0.793$ Kips; Location in COMB4
Original COMPRESION = YES (Use for internal information only)

Location of Reaction of Force

Max. Reation (Comb. \#4)= -1.894 Kips-Use in web member w/Tension
Max. Reation (Comb. \#1) $=4.207$ Kips-Use in web member w/Compr.

For Web Member Check 25\% of Reaction.

Comp=0.793; Tens=2.251; seno = 0.865; Max. 25\% Reaction
Vertical Shear(Tens) $=1.947$; Vertical Shear(Comp) $=0.686$
Max. Tension = 2.251 Kips;(Not Change)
Max. Comp = 1.052 Kips (Change)

Slenderness Ratio

k For Calculation Fcr per Table 4.3-1
(Comp.) Kx=0.75; Ky=0.90; Kz=0.00

Max. Axial Force Top \& Bottom Chord Local

Max. Compr (top chord) force $=15.790$ Kips in Member \#7; Comb1
Max. Tension (top chord) force $=6.361$ Kips in Member \#7; Comb4
Max. Compr (Bottom chord) force = 6.363 Kips in Member \#20; Comb4
Max. Tension (Bottom chord) force $=15.790$ Kips in Member \#20; Comb1

CHECK SLENDERNESS RATIOS

S.R. $x=\left(L^{*} 12\right) / r x=\left(1.661^{*} 12\right) / 0.156=127.600$
S.R. $y=\left(L^{*} 12\right) / r y=\left(1.661^{*} 12\right) / 0.156=127.600$
S.R. $z=\left(L^{*} 12\right) / r z=\left(1.661^{*} 12\right) / 0.156=127.600$

Control $=127.600$
Comp. Ratio $=$ Control/200 $=127.60 / 200=0.64$
Comp. Status: $0.64<1.00 \ll--$ OK
Tens. Ratio $=$ Control/ $240=127.60 / 240=0.53$
Tens. Status: $0.53<1.00 \ll-$ OK

CHECK COMPRESSION (4.2-4)

Shim, fillers or ties: NOT
S.R. $x=\left(K x^{*} L^{*} 12\right) / r x=\left(0.750^{*} 1.66^{*} 12\right) / 0.156=95.700$
S.R. $y=\left(k y^{*} L^{*} 12\right) / r y=\left(0.900^{*} 1.66^{*} 12\right) / 0.156=114.840$

SLRgov=114.84
Fy=50.00 ksi;
Area=0.31 in^2;Comp=1.05 kips; fa=Comp/Area=3.43 ksi
$\mathrm{Fe}=21.70 \mathrm{ksi} ; \mathrm{Fcr}=19.03 \mathrm{ksi}$
Fcr= $19.03 \mathrm{ksi} ;$ Fa=0.6Fcr= 11.42 ksi
IRc=fa/Fa=3.428/11.420=0.300
Comp. Status: $0.30<=1.00 \ll-$ OK
CHECK TENSION (Eq. 4.2-2)
$\mathrm{ft}=$ Tens \times factor/Area $=(2.251 \times 1.000) / 0.307=7.337 \mathrm{ksi}$
$\mathrm{Ft}=0.6(\mathrm{Fy})=0.6 * 50.000=30.000 \mathrm{ksi}$
Ratio $=\mathrm{ft} / \mathrm{Ft}=7.34 / 30.00=0.25$
Status: $0.25<1.00 \ll--$ OK

WELDING WEB MEMBER

Strength of E70XX electrodes: Fexx=70 ksi
Force=2.251; weld size $=1 / 8^{\prime \prime}$
Lenght weld $=$ Force \times OMEGAw/(2 * Fnw x tef)
Lenght weld $=2.251 \times 2.0 /(2 \times 42.000 .185)=0.290 \mathrm{in}$.
Use: $1 / 8$ " ; 2 inches Both end (total lenght) [But use 1 in . Min. each leg of each end]
CHECK ECCENTRICITY (4.5.4)
Woking point in both end: 0.0in. OK
This is important to fabrication.

DESIGN MEMBER

INPUT FORM (ASD) Revision SJI 100-2020
Member Number = 32
Serial $=\mathrm{K}$
Member name = Interior web member
Type = Single(2)
Section = 0
Designation $=\mathrm{R} 5 / 8 ; \mathrm{A}=0.307^{\wedge} 2 ; \mathrm{Fy}=50 \mathrm{ksi}$
Reinforcement = NA;
Span design = 260.00 in
Lenght Member $=1^{\prime}-715 / 16^{\prime \prime}=1.661 \mathrm{ft}$. $=19.94 \mathrm{in}$.
Tension \& Compression Factor Design $=1.000$
Max. Code Check Ratio = 1.00
Ω (Omega) $=1.67=1 / 1.67=0.6$; Spec. Section 4.2.3 Eq. 4.2
Omega Welding $=2.00$ Ref. SJI Spec 4.2.3.4
Min. Thicknees Material $=1 / 8^{\prime \prime}=0.125 \mathrm{in}$.
Weld Size(tw) $=1 / 8^{\prime \prime}=0.185 \mathrm{in} .=2.960$ (Weld Throat for Rod)

EFFECTIVE SLENDERNESS RATIOS TABLE 4.3-1

Maximun Slenderness Ratio (all = allowable)
For Compression member Slenderness Ratio(L/r)all = 200
For Tension member Slenderness Ratio(L/r)all = 240

Data Member

Yield Stress: Fy=50 ksi
Modulus of Elasticity: E=29000 ksi
Area $=0.307$ in^2; $\mathrm{k}=0.318$ inches
Inertia $x=0.007$ in $^{\wedge} 4, \mathrm{ly}=0.105 \mathrm{in}^{\wedge} 4$
$r x=0.16 \mathrm{in} ; r y=0.16 \mathrm{in} ; \mathrm{y}=0.313 \mathrm{in}$
$\mathrm{rz}=0.156 \mathrm{in} ; \mathrm{Qs}=1.000$
Spacing between chord angles $=0.500$ in $=1 / 2^{\prime \prime}$
Combination; [SW=Self Weight; F=Factor]
COMB1 $=1.00 x D L+1.00 x L L+[S W ~ F=1.00]$
COMB2 $=$ Not Active or Null this Combination
COMB3 $=1.00 \times L L+[$ SW F=1.00]
COMB4 $=0.60 \times D L+1.00 \times U P+[S W F=0.60]$

Summary Combination Maximun Results

COMB	T. FORCE Kips	C. FORCE Kips	SHEAR Kips	MOM(Mi) K-in	MOM(Me) K-in
COMB1	0.000	2.247	0.000	0.000	0.000
COMB2	0.000	0.000	0.000	0.000	0.000
COMB3	0.000	1.864	0.000	0.000	0.000
COMB4	0.797	0.000	0.000	0.000	0.000

Max. Local Shear $(\mathrm{V})=0.000000$ Kips; Location in COMB4
Max. Moment $(\mathrm{Me})=0.000000 \mathrm{~K}$-ft; Location in COMB4
Max. Moment $(\mathrm{Mi})=0.000000$ K-ft; Location in COMB4
Max. Tension = 0.797 Kips; Location in COMB4
Max. Compresion = 2.247 Kips; Location in COMB1
Original COMPRESION = YES (Use for internal information only)

Location of Reaction of Force

Max. Reation (Comb. \#4)= -1.894 Kips-Use in web member w/Tension
Max. Reation (Comb. \#1) $=4.207$ Kips-Use in web member w/Compr.

For Web Member Check 25\% of Reaction.

Comp=2.247; Tens=0.797; seno = 0.865; Max. 25\% Reaction
Vertical Shear(Tens) $=0.689$; Vertical Shear(Comp) $=1.943$
Max. Tension $=0.797$ Kips; (Not Change)
Max. Compresion = 2.247 Kips; (Not Change)

Slenderness Ratio

k For Calculation Fcr per Table 4.3-1
(Comp.) Kx=0.75; Ky=0.90; Kz=0.00

Max. Axial Force Top \& Bottom Chord Local

Max. Compr (top chord) force $=15.790$ Kips in Member \#7; Comb1
Max. Tension (top chord) force $=6.361$ Kips in Member \#7; Comb4
Max. Compr (Bottom chord) force = 6.363 Kips in Member \#20; Comb4
Max. Tension (Bottom chord) force $=15.790$ Kips in Member \#20; Comb1

CHECK SLENDERNESS RATIOS

S.R. $x=\left(L^{*} 12\right) / r x=\left(1.661^{*} 12\right) / 0.156=127.600$
S.R. $y=\left(L^{*} 12\right) / r y=\left(1.661^{*} 12\right) / 0.156=127.600$
S.R. $z=\left(L^{*} 12\right) / r z=\left(1.661^{*} 12\right) / 0.156=127.600$

Control $=127.600$
Comp. Ratio $=$ Control/200 $=127.60 / 200=0.64$
Comp. Status: $0.64<1.00 \ll--$ OK
Tens. Ratio $=$ Control/ $240=127.60 / 240=0.53$
Tens. Status: $0.53<1.00 \ll-$ OK

CHECK COMPRESSION (4.2-4)

Shim, fillers or ties: NOT
S.R. $x=\left(K x^{*} L^{*} 12\right) / r x=\left(0.750^{*} 1.66^{*} 12\right) / 0.156=95.700$
S.R. $y=\left(k y^{*} L^{*} 12\right) / r y=\left(0.900^{*} 1.66^{*} 12\right) / 0.156=114.840$

SLRgov=114.84
Fy=50.00 ksi;
Area=0.31 in^2;Comp=2.25 kips; fa=Comp/Area=7.32 ksi
$\mathrm{Fe}=21.70 \mathrm{ksi} ; \mathrm{Fcr}=19.03 \mathrm{ksi}$
Fcr=19.03 ksi; Fa=0.6Fcr= 11.42 ksi
IRc=fa/Fa=7.323/11.420=0.640
Comp. Status: 0.64 <= 1.00 <<-- OK
CHECK TENSION (Eq. 4.2-2)
$\mathrm{ft}=$ Tens \times factor/Area $=(0.797 \times 1.000) / 0.307=2.599 \mathrm{ksi}$
$\mathrm{Ft}=0.6(\mathrm{Fy})=0.6 * 50.000=30.000 \mathrm{ksi}$
Ratio $=\mathrm{ft} / \mathrm{Ft}=2.60 / 30.00=0.09$
Status: $0.09<1.00$ <<-- OK

WELDING WEB MEMBER

Strength of E70XX electrodes: Fexx=70 ksi
Force=2.247; weld size $=1 / 8^{\prime \prime}$
Lenght weld $=$ Force \times OMEGAw/(2 * Fnw x tef)
Lenght weld $=2.247 \times 2.0 /(2 \times 42.000 .185)=0.289 \mathrm{in}$.
Use: $1 / 8$ " ; 2 inches Both end (total lenght) [But use 1 in . Min. each leg of each end]
CHECK ECCENTRICITY (4.5.4)
Woking point in both end: 0.0in. OK
This is important to fabrication.

DESIGN MEMBER

INPUT FORM (ASD) Revision SJI 100-2020
Member Number = 33
Serial $=\mathrm{K}$
Member name = Interior web member
Type = Single(2)
Section = 0
Designation $=\mathrm{R} 5 / 8 ; \mathrm{A}=0.307^{\wedge} 2 ; \mathrm{Fy}=50 \mathrm{ksi}$
Reinforcement = NA;
Span design = 260.00 in
Lenght Member = $1^{\prime}-715 / 16 "=1.661 \mathrm{ft}$. $=19.94 \mathrm{in}$.
Tension \& Compression Factor Design $=1.000$
Max. Code Check Ratio = 1.00
Ω (Omega) $=1.67=1 / 1.67=0.6$; Spec. Section 4.2.3 Eq. 4.2
Omega Welding $=2.00$ Ref. SJI Spec 4.2.3.4
Min. Thicknees Material $=1 / 8^{\prime \prime}=0.125 \mathrm{in}$.
Weld Size(tw) $=1 / 8^{\prime \prime}=0.185 \mathrm{in} .=2.960$ (Weld Throat for Rod)

EFFECTIVE SLENDERNESS RATIOS TABLE 4.3-1

Maximun Slenderness Ratio (all = allowable)
For Compression member Slenderness Ratio(L/r)all = 200
For Tension member Slenderness Ratio(L/r)all = 240

Data Member

Yield Stress: Fy=50 ksi
Modulus of Elasticity: E=29000 ksi
Area $=0.307$ in^2; $\mathrm{k}=0.318$ inches
Inertia $x=0.007$ in $^{\wedge} 4, \mathrm{ly}=0.105 \mathrm{in}^{\wedge} 4$
$r x=0.16 \mathrm{in} ; r y=0.16 \mathrm{in} ; \mathrm{y}=0.313 \mathrm{in}$
$\mathrm{rz}=0.156 \mathrm{in} ; \mathrm{Qs}=1.000$
Spacing between chord angles $=0.500$ in $=1 / 2^{\prime \prime}$
Combination; [SW=Self Weight; F=Factor]
COMB1 $=1.00 x D L+1.00 x L L+[S W ~ F=1.00]$
COMB2 $=$ Not Active or Null this Combination
COMB3 $=1.00 \times L L+[$ SW F=1.00]
COMB4 $=0.60 \times D L+1.00 \times U P+[S W F=0.60]$

Summary Combination Maximun Results

COMB	T. FORCE Kips	C. FORCE Kips	SHEAR Kips	MOM(Mi) K-in	MOM(Me) K-in
COMB1	1.494	0.000	0.000	0.000	0.000
COMB2	0.000	0.000	0.000	0.000	0.000
COMB3	1.241	0.000	0.000	0.000	0.000
COMB4	0.000	0.498	0.000	0.000	0.000

Max. Local Shear $(\mathrm{V})=0.000000$ Kips; Location in COMB4
Max. Moment $(\mathrm{Me})=0.000000 \mathrm{~K}$-ft; Location in COMB4
Max. Moment $(\mathrm{Mi})=0.000000$ K-ft; Location in COMB4
Max. Tension = 1.494 Kips; Location in COMB1
Max. Compresion $=0.498$ Kips; Location in COMB4
Original COMPRESION = YES (Use for internal information only)

Location of Reaction of Force

Max. Reation (Comb. \#4)= -1.894 Kips-Use in web member w/Tension
Max. Reation (Comb. \#1) $=4.207$ Kips-Use in web member w/Compr.

For Web Member Check 25\% of Reaction.

Comp=0.498; Tens=1.494; seno = 0.865; Max. 25\% Reaction
Vertical Shear(Tens) $=1.292$; Vertical Shear(Comp) $=0.431$
Max. Tension = $1.494 \mathrm{Kips} ;$ (Not Change)
Max. Comp = 1.052 Kips (Change)

Slenderness Ratio

k For Calculation Fcr per Table 4.3-1
(Comp.) Kx=0.75; Ky=0.90; Kz=0.00

Max. Axial Force Top \& Bottom Chord Local

Max. Compr (top chord) force $=15.790$ Kips in Member \#7; Comb1
Max. Tension (top chord) force $=6.361$ Kips in Member \#7; Comb4
Max. Compr (Bottom chord) force = 6.363 Kips in Member \#20; Comb4
Max. Tension (Bottom chord) force $=15.790$ Kips in Member \#20; Comb1

CHECK SLENDERNESS RATIOS

S.R. $x=\left(L^{*} 12\right) / r x=\left(1.661^{*} 12\right) / 0.156=127.600$
S.R. $y=\left(L^{*} 12\right) / r y=\left(1.661^{*} 12\right) / 0.156=127.600$
S.R. $z=\left(L^{*} 12\right) / r z=\left(1.661^{*} 12\right) / 0.156=127.600$

Control $=127.600$
Comp. Ratio $=$ Control $/ 200=127.60 / 200=0.64$
Comp. Status: $0.64<1.00 \ll--$ OK
Tens. Ratio $=$ Control/ $240=127.60 / 240=0.53$
Tens. Status: $0.53<1.00 \ll-$ OK

CHECK COMPRESSION (4.2-4)

Shim, fillers or ties: NOT
S.R. $x=\left(K x^{*} L^{*} 12\right) / r x=\left(0.750^{*} 1.66^{*} 12\right) / 0.156=95.700$
S.R. $y=\left(k y^{*} L^{*} 12\right) / r y=\left(0.900^{*} 1.66^{*} 12\right) / 0.156=114.840$

SLRgov=114.84
Fy=50.00 ksi;
Area=0.31 in^2;Comp=1.05 kips; fa=Comp/Area=3.43 ksi
$\mathrm{Fe}=21.70 \mathrm{ksi} ; \mathrm{Fcr}=19.03 \mathrm{ksi}$
Fcr= $19.03 \mathrm{ksi} ;$ Fa=0.6Fcr= 11.42 ksi
IRc=fa/Fa=3.428/11.420=0.300
Comp. Status: $0.30<=1.00 \ll-$ OK
CHECK TENSION (Eq. 4.2-2)
$\mathrm{ft}=$ Tens \times factor/Area $=(1.494 \times 1.000) / 0.307=4.870 \mathrm{ksi}$
$\mathrm{Ft}=0.6(\mathrm{Fy})=0.6 * 50.000=30.000 \mathrm{ksi}$
Ratio $=\mathrm{ft} / \mathrm{Ft}=4.87 / 30.00=0.16$
Status: $0.16<1.00 \ll--$ OK

WELDING WEB MEMBER

Strength of E70XX electrodes: Fexx=70 ksi
Force $=1.494$; weld size $=1 / 8^{\prime \prime}$
Lenght weld $=$ Force \times OMEGAw/(2 * Fnw x tef)
Lenght weld $=1.494 \times 2.0 /(2 \times 42.000 .185)=0.192 \mathrm{in}$.
Use: $1 / 8$ " $; 2$ inches Both end (total lenght) [But use 1 in . Min. each leg of each end]
CHECK ECCENTRICITY (4.5.4)
Woking point in both end: 0.0in. OK
This is important to fabrication.

DESIGN MEMBER

INPUT FORM (ASD) Revision SJI 100-2020
Member Number = 34
Serial $=\mathrm{K}$
Member name = Interior web member
Type = Single(2)
Section = 0
Designation $=\mathrm{R} 5 / 8 ; \mathrm{A}=0.307^{\wedge} 2 ; \mathrm{Fy}=50 \mathrm{ksi}$
Reinforcement = NA;
Span design = 260.00 in
Lenght Member = $1^{\prime}-715 / 16^{\prime \prime}=1.661 \mathrm{ft}$. $=19.94 \mathrm{in}$.
Tension \& Compression Factor Design $=1.000$
Max. Code Check Ratio = 1.00
Ω (Omega) $=1.67=1 / 1.67=0.6$; Spec. Section 4.2.3 Eq. 4.2
Omega Welding $=2.00$ Ref. SJI Spec 4.2.3.4
Min. Thicknees Material $=1 / 8^{\prime \prime}=0.125 \mathrm{in}$.
Weld Size(tw) $=1 / 8^{\prime \prime}=0.185 \mathrm{in} .=2.960$ (Weld Throat for Rod)

EFFECTIVE SLENDERNESS RATIOS TABLE 4.3-1

Maximun Slenderness Ratio (all = allowable)
For Compression member Slenderness Ratio(L/r)all = 200
For Tension member Slenderness Ratio(L/r)all = 240

Data Member

Yield Stress: Fy=50 ksi
Modulus of Elasticity: E=29000 ksi
Area $=0.307$ in^2; $\mathrm{k}=0.318$ inches
Inertia $x=0.007$ in $^{\wedge} 4$, ly $=0.105$ in^^ $^{\wedge}$
$r x=0.16 \mathrm{in} ; r y=0.16 \mathrm{in} ; \mathrm{y}=0.313 \mathrm{in}$
$\mathrm{rz}=0.156 \mathrm{in} ; \mathrm{Qs}=1.000$
Spacing between chord angles $=0.500$ in $=1 / 2^{\prime \prime}$
Combination; [SW=Self Weight; F=Factor]
COMB1 $=1.00 x D L+1.00 x L L+[S W ~ F=1.00]$
COMB2 $=$ Not Active or Null this Combination
COMB3 $=1.00 \times L L+[$ SW F=1.00]
COMB4 $=0.60 \times D L+1.00 \times U P+[S W F=0.60]$

Summary Combination Maximun Results

COMB	T. FORCE Kips	C. FORCE Kips	SHEAR Kips	MOM(Mi) K-in	MOM(Me) K-in
COMB1	0.000	1.490	0.000	0.000	0.000
COMB2	0.000	0.000	0.000	0.000	0.000
COMB3	0.000	1.236	0.000	0.000	0.000
COMB4	0.502	0.000	0.000	0.000	0.000

Max. Local Shear $(\mathrm{V})=0.000000$ Kips; Location in COMB4
Max. Moment $(\mathrm{Me})=0.000000 \mathrm{~K}$-ft; Location in COMB4
Max. Moment $(\mathrm{Mi})=0.000000$ K-ft; Location in COMB4
Max. Tension $=0.502$ Kips; Location in COMB4
Max. Compresion $=1.490$ Kips; Location in COMB1
Original COMPRESION = YES (Use for internal information only)

Location of Reaction of Force

Max. Reation (Comb. \#4)= -1.894 Kips-Use in web member w/Tension
Max. Reation (Comb. \#1) $=4.207$ Kips-Use in web member w/Compr.

For Web Member Check 25\% of Reaction.

Comp=1.490; Tens=0.502; seno = 0.865; Max. 25\% Reaction
Vertical Shear(Tens) $=0.434$; Vertical Shear(Comp) $=1.289$
Max. Tension $=0.548 \mathrm{Kips}$ (Change)
Max. Compresion $=1.490$ Kips; (Not Change)

Slenderness Ratio

k For Calculation Fcr per Table 4.3-1
(Comp.) Kx=0.75; Ky=0.90; Kz=0.00

Max. Axial Force Top \& Bottom Chord Local

Max. Compr (top chord) force $=15.790$ Kips in Member \#7; Comb1
Max. Tension (top chord) force $=6.361$ Kips in Member \#7; Comb4
Max. Compr (Bottom chord) force = 6.363 Kips in Member \#20; Comb4
Max. Tension (Bottom chord) force $=15.790$ Kips in Member \#20; Comb1

CHECK SLENDERNESS RATIOS

S.R. $x=\left(L^{*} 12\right) / r x=\left(1.661^{*} 12\right) / 0.156=127.600$
S.R. $y=\left(L^{*} 12\right) / r y=\left(1.661^{*} 12\right) / 0.156=127.600$
S.R. $z=\left(L^{*} 12\right) / r z=\left(1.661^{*} 12\right) / 0.156=127.600$

Control = 127.600
Comp. Ratio $=$ Control/200 $=127.60 / 200=0.64$
Comp. Status: $0.64<1.00 \ll--$ OK
Tens. Ratio $=$ Control/ $240=127.60 / 240=0.53$
Tens. Status: $0.53<1.00 \ll-$ OK

CHECK COMPRESSION (4.2-4)

Shim, fillers or ties: NOT
S.R. $x=\left(K x^{*} L^{*} 12\right) / r x=\left(0.750^{*} 1.66^{*} 12\right) / 0.156=95.700$
S.R. $y=\left(k y^{*} L^{*} 12\right) / r y=\left(0.900^{*} 1.66^{*} 12\right) / 0.156=114.840$

SLRgov=114.84
Fy=50.00 ksi;
Area=0.31 in^2;Comp=1.49 kips; fa=Comp/Area=4.86 ksi
$\mathrm{Fe}=21.70 \mathrm{ksi} ; \mathrm{Fcr}=19.03 \mathrm{ksi}$
Fcr= $19.03 \mathrm{ksi} ;$ Fa=0.6Fcr= 11.42 ksi
IRc=fa/Fa=4.858/11.420=0.430
Comp. Status: 0.43 <= 1.00 <<-- OK
CHECK TENSION (Eq. 4.2-2)
$\mathrm{ft}=$ Tens \times factor/Area $=(0.548 \times 1.000) / 0.307=1.785 \mathrm{ksi}$
$\mathrm{Ft}=0.6(\mathrm{Fy})=0.6 * 50.000=30.000 \mathrm{ksi}$
Ratio $=\mathrm{ft} / \mathrm{Ft}=1.78 / 30.00=0.06$
Status: $0.06<1.00 \ll--$ OK

WELDING WEB MEMBER

Strength of E70XX electrodes: Fexx=70 ksi
Force $=1.490$; weld size $=1 / 8^{\prime \prime}$
Lenght weld $=$ Force \times OMEGAw/(2 * Fnw x tef)
Lenght weld $=1.490 \times 2.0 /(2 \times 42.000 .185)=0.192 \mathrm{in}$.
Use: $1 / 8^{\prime \prime} ; 2$ inches Both end (total lenght) [But use 1 in . Min. each leg of each end]
CHECK ECCENTRICITY (4.5.4)
Woking point in both end: 0.0in. OK
This is important to fabrication.

DESIGN MEMBER

INPUT FORM (ASD) Revision SJI 100-2020
Member Number = 35
Serial $=\mathrm{K}$
Member name = Interior web member
Type = Single(2)
Section = 0
Designation $=\mathrm{R} 5 / 8 ; \mathrm{A}=0.307^{\wedge} 2 ; \mathrm{Fy}=50 \mathrm{ksi}$
Reinforcement = NA;
Span design = 260.00 in
Lenght Member = $1^{\prime}-715 / 16 "=1.661 \mathrm{ft}$. $=19.94 \mathrm{in}$.
Tension \& Compression Factor Design $=1.000$
Max. Code Check Ratio = 1.00
Ω (Omega) $=1.67=1 / 1.67=0.6$; Spec. Section 4.2.3 Eq. 4.2
Omega Welding $=2.00$ Ref. SJI Spec 4.2.3.4
Min. Thicknees Material $=1 / 8^{\prime \prime}=0.125 \mathrm{in}$.
Weld Size(tw) $=1 / 8^{\prime \prime}=0.185 \mathrm{in} .=2.960$ (Weld Throat for Rod)

EFFECTIVE SLENDERNESS RATIOS TABLE 4.3-1

Maximun Slenderness Ratio (all = allowable)
For Compression member Slenderness Ratio(L/r)all = 200
For Tension member Slenderness Ratio(L/r)all = 240

Data Member

Yield Stress: Fy=50 ksi
Modulus of Elasticity: E=29000 ksi
Area $=0.307$ in^2; $\mathrm{k}=0.318$ inches
Inertia $x=0.007$ in $^{\wedge} 4, \mathrm{ly}=0.105 \mathrm{in}^{\wedge} 4$
$r x=0.16 \mathrm{in} ; r y=0.16 \mathrm{in} ; \mathrm{y}=0.313 \mathrm{in}$
$\mathrm{rz}=0.156 \mathrm{in} ; \mathrm{Qs}=1.000$
Spacing between chord angles $=0.500$ in $=1 / 2^{\prime \prime}$
Combination; [SW=Self Weight; F=Factor]
COMB1 $=1.00 x D L+1.00 x L L+[S W ~ F=1.00]$
COMB2 $=$ Not Active or Null this Combination
COMB3 $=1.00 \times L L+[$ SW F=1.00]
COMB4 $=0.60 \times D L+1.00 \times U P+[S W F=0.60]$

Summary Combination Maximun Results

COMB	T. FORCE Kips	C. FORCE Kips	SHEAR Kips	MOM(Mi) K-in	MOM(Me) K-in
COMB1	0.748	0.000	0.000	0.000	0.000
COMB2	0.000	0.000	0.000	0.000	0.000
COMB3	0.621	0.000	0.000	0.000	0.000
COMB4	0.000	0.253	0.000	0.000	0.000

Max. Local Shear $(\mathrm{V})=0.000000$ Kips; Location in COMB4
Max. Moment $(\mathrm{Me})=0.000000 \mathrm{~K}$-ft; Location in COMB4
Max. Moment $(\mathrm{Mi})=0.000000$ K-ft; Location in COMB4
Max. Tension $=0.748$ Kips; Location in COMB1
Max. Compresion $=0.253$ Kips; Location in COMB4
Original COMPRESION = YES (Use for internal information only)

Location of Reaction of Force

Max. Reation (Comb. \#4)= -1.894 Kips-Use in web member w/Tension
Max. Reation (Comb. \#1) $=4.207$ Kips-Use in web member w/Compr.

For Web Member Check 25\% of Reaction.

Comp=0.253; Tens=0.748; seno = 0.865; Max. 25\% Reaction
Vertical Shear(Tens) $=0.647$; Vertical Shear(Comp) $=0.219$
Max. Tension $=0.748 \mathrm{Kips} ;$ (Not Change)
Max. Comp = 1.052 Kips (Change)

Slenderness Ratio

k For Calculation Fcr per Table 4.3-1
(Comp.) Kx=0.75; Ky=0.90; Kz=0.00

Max. Axial Force Top \& Bottom Chord Local

Max. Compr (top chord) force $=15.790$ Kips in Member \#7; Comb1
Max. Tension (top chord) force = 6.361 Kips in Member \#7; Comb4
Max. Compr (Bottom chord) force = 6.363 Kips in Member \#20; Comb4
Max. Tension (Bottom chord) force $=15.790$ Kips in Member \#20; Comb1

CHECK SLENDERNESS RATIOS

S.R. $x=\left(L^{*} 12\right) / r x=\left(1.661^{*} 12\right) / 0.156=127.600$
S.R. $y=\left(L^{*} 12\right) / r y=\left(1.661^{*} 12\right) / 0.156=127.600$
S.R. $z=\left(L^{*} 12\right) / r z=\left(1.661^{*} 12\right) / 0.156=127.600$

Control $=127.600$
Comp. Ratio $=$ Control/200 $=127.60 / 200=0.64$
Comp. Status: $0.64<1.00 \ll--$ OK
Tens. Ratio $=$ Control/ $240=127.60 / 240=0.53$
Tens. Status: $0.53<1.00 \ll-$ OK

CHECK COMPRESSION (4.2-4)

Shim, fillers or ties: NOT
S.R. $x=\left(K x^{*} L^{*} 12\right) / r x=\left(0.750^{*} 1.66^{*} 12\right) / 0.156=95.700$
S.R. $y=\left(k y^{*} L^{*} 12\right) / r y=\left(0.900^{*} 1.66^{*} 12\right) / 0.156=114.840$

SLRgov=114.84
Fy=50.00 ksi;
Area=0.31 in^2;Comp=1.05 kips; fa=Comp/Area=3.43 ksi
$\mathrm{Fe}=21.70 \mathrm{ksi} ; \mathrm{Fcr}=19.03 \mathrm{ksi}$
Fcr= $19.03 \mathrm{ksi} ;$ Fa=0.6Fcr= 11.42 ksi
IRc=fa/Fa=3.428/11.420=0.300
Comp. Status: $0.30<=1.00 \ll-$ OK
CHECK TENSION (Eq. 4.2-2)
$\mathrm{ft}=$ Tens \times factor/Area $=(0.748 \times 1.000) / 0.307=2.437 \mathrm{ksi}$
$\mathrm{Ft}=0.6(\mathrm{Fy})=0.6 * 50.000=30.000 \mathrm{ksi}$
Ratio $=\mathrm{ft} / \mathrm{Ft}=2.44 / 30.00=0.08$
Status: $0.08<1.00$ <<-- OK

WELDING WEB MEMBER

Strength of E70XX electrodes: Fexx=70 ksi
Force $=1.052$; weld size $=1 / 8^{\prime \prime}$
Lenght weld $=$ Force \times OMEGAw/(2 * Fnw x tef)
Lenght weld $=1.052 \times 2.0 /(2 \times 42.000 .185)=0.135 \mathrm{in}$.
Use: $1 / 8$ " $; 2$ inches Both end (total lenght) [But use 1 in . Min. each leg of each end]
CHECK ECCENTRICITY (4.5.4)
Woking point in both end: 0.0in. OK
This is important to fabrication.

DESIGN MEMBER

INPUT FORM (ASD) Revision SJI 100-2020
Member Number = 36
Serial $=\mathrm{K}$
Member name = Interior web member
Type = Single(2)
Section = 0
Designation $=\mathrm{R} 1 / 2 ; \mathrm{A}=0.196^{\wedge} 2 ; \mathrm{Fy}=50 \mathrm{ksi}$
Reinforcement = NA;
Span design = 260.00 in
Lenght Member = $1^{\prime}-715 / 16^{\prime \prime}=1.661 \mathrm{ft}$. $=19.94 \mathrm{in}$.
Tension \& Compression Factor Design $=1.000$
Max. Code Check Ratio $=1.00$
Ω (Omega) $=1.67=1 / 1.67=0.6$; Spec. Section 4.2.3 Eq. 4.2
Omega Welding $=2.00$ Ref. SJI Spec 4.2.3.4
Min. Thicknees Material $=1 / 8^{\prime \prime}=0.125 \mathrm{in}$.
Weld Size(tw) $=1 / 8^{\prime \prime}=0.170 \mathrm{in} .=2.720$ (Weld Throat for Rod)

EFFECTIVE SLENDERNESS RATIOS TABLE 4.3-1

Maximun Slenderness Ratio (all = allowable)
For Compression member Slenderness Ratio(L/r)all = 200
For Tension member Slenderness Ratio(L/r)all = 240

Data Member

Yield Stress: Fy=50 ksi
Modulus of Elasticity: E=29000 ksi
Area $=0.196$ in^2 $^{\wedge} \mathrm{k}=0.318$ inches
Inertia $x=0.003$ in $^{\wedge} 4, \mathrm{ly}=0.052 \mathrm{in}^{\wedge} 4$
$r x=0.13 \mathrm{in} ; r y=0.13 \mathrm{in} ; \mathrm{y}=0.250 \mathrm{in}$
$\mathrm{rz}=0.125 \mathrm{in} ; \mathrm{Qs}=1.000$
Spacing between chord angles $=0.500$ in $=1 / 2^{\prime \prime}$
Combination; [SW=Self Weight; F=Factor]
COMB1 $=1.00 x D L+1.00 x L L+[S W ~ F=1.00]$
COMB2 $=$ Not Active or Null this Combination
COMB3 $=1.00 \times L L+[$ SW F=1.00]
COMB4 $=0.60 \times D L+1.00 \times U P+[S W F=0.60]$

Summary Combination Maximun Results

COMB	T. FORCE	C. FORCE	SHEAR	MOM(Mi)	MOM(Me)
	Kips	Kips	Kips	K-in	K-in
COMB1	0.000	0.739	0.000	0.000	0.000
COMB2	0.000	0.000	0.000	0.000	0.000
COMB3	0.000	0.613	0.000	0.000	0.000
COMB4	0.255	0.000	0.000	0.000	0.000

Max. Local Shear $(\mathrm{V})=0.000000$ Kips; Location in COMB4
Max. Moment $(\mathrm{Me})=0.000000 \mathrm{~K}$-ft; Location in COMB4
Max. Moment (Mi) $=0.000000$ K-ft; Location in COMB4
Max. Tension $=0.255$ Kips; Location in COMB4
Max. Compresion $=0.739$ Kips; Location in COMB1
Original COMPRESION = YES (Use for internal information only)

Location of Reaction of Force

Max. Reation (Comb. \#4)= -1.894 Kips-Use in web member w/Tension
Max. Reation (Comb. \#1) $=4.207$ Kips-Use in web member w/Compr.

For Web Member Check 25\% of Reaction.

Comp=0.739; Tens=0.255; seno = 0.865; Max. 25\% Reaction
Vertical Shear(Tens) $=0.221$; Vertical Shear(Comp) $=0.639$
Max. Tension $=0.548 \mathrm{Kips}$ (Change)
Max. Comp = 1.052 Kips (Change)

Slenderness Ratio

k For Calculation Fcr per Table 4.3-1
(Comp.) $\mathrm{Kx}=0.75$; $\mathrm{Ky}=0.90$; Kz=0.00

Max. Axial Force Top \& Bottom Chord Local

Max. Compr (top chord) force $=15.790$ Kips in Member \#7; Comb1
Max. Tension (top chord) force = 6.361 Kips in Member \#7; Comb4
Max. Compr (Bottom chord) force = 6.363 Kips in Member \#20; Comb4
Max. Tension (Bottom chord) force $=15.790$ Kips in Member \#20; Comb1

CHECK SLENDERNESS RATIOS

S.R. $x=\left(L^{*} 12\right) / r x=\left(1.661^{*} 12\right) / 0.125=159.500$
S.R. $y=\left(L^{*} 12\right) / r y=\left(1.661^{*} 12\right) / 0.125=159.500$
S.R. $z=\left(L^{*} 12\right) / r z=\left(1.661^{*} 12\right) / 0.125=159.500$

Control $=159.500$
Comp. Ratio $=$ Control/200 $=159.50 / 200=0.80$
Comp. Status: $0.80<1.00 \ll-$ OK
Tens. Ratio $=$ Control/240 $=159.50 / 240=0.66$
Tens. Status: 0.66 < 1.00 <<-- OK

CHECK COMPRESSION (4.2-4)

Shim, fillers or ties: NOT
S.R. $x=\left(K x^{*} L^{*} 12\right) / r x=\left(0.750^{*} 1.66^{\star} 12\right) / 0.125=119.625$
S.R. $y=\left(k y^{*} L^{*} 12\right) / r y=\left(0.900^{*} 1.66^{*} 12\right) / 0.125=143.550$

SLRgov=143.55
Fy=50.00 ksi;
Area=0.20 in^2;Comp=1.05 kips; fa=Comp/Area=5.36 ksi
$\mathrm{Fe}=13.89 \mathrm{ksi} ; \mathrm{Fcr}=12.18 \mathrm{ksi}$
Fcr=12.18 ksi; Fa=0.6Fcr= 7.31 ksi
IRc=fa/Fa=5.357/7.309=0.730
Comp. Status: 0.73 <= 1.00 <<-- OK

CHECK TENSION (Eq. 4.2-2)

$\mathrm{ft}=$ Tens \times factor/Area $=(0.548 \times 1.000) / 0.196=2.789 \mathrm{ksi}$
$\mathrm{Ft}=0.6(\mathrm{Fy})=0.6 * 50.000=30.000 \mathrm{ksi}$
Ratio $=\mathrm{ft} / \mathrm{Ft}=2.79 / 30.00=0.09$
Status: $0.09<1.00$ <<-- OK

WELDING WEB MEMBER

Strength of E70XX electrodes: Fexx=70 ksi
Force $=1.052$; weld size $=1 / 8^{\prime \prime}$
Lenght weld $=$ Force \times OMEGAw/(2 * Fnw x tef)
Lenght weld $=1.052 \times 2.0 /(2 \times 42.000 .170)=0.147 \mathrm{in}$.
Use: $1 / 8^{\prime \prime} ; 2$ inches Both end (total lenght) [But use 1 in . Min. each leg of each end]
CHECK ECCENTRICITY (4.5.4)
Woking point in both end: 0.0in. OK
This is important to fabrication.

DESIGN MEMBER

INPUT FORM (ASD) Revision SJI 100-2020
Member Number = 37
Serial $=\mathrm{K}$
Member name = Interior web member
Type = Single(2)
Section = 0
Designation $=\mathrm{R} 1 / 2 ; \mathrm{A}=0.196^{\wedge} 2 ; \mathrm{Fy}=50 \mathrm{ksi}$
Reinforcement = NA;
Span design = 260.00 in
Lenght Member = $1^{\prime}-715 / 16 "=1.661 \mathrm{ft}$. $=19.94 \mathrm{in}$.
Tension \& Compression Factor Design $=1.000$
Max. Code Check Ratio $=1.00$
Ω (Omega) $=1.67=1 / 1.67=0.6$; Spec. Section 4.2.3 Eq. 4.2
Omega Welding $=2.00$ Ref. SJI Spec 4.2.3.4
Min. Thicknees Material $=1 / 8^{\prime \prime}=0.125 \mathrm{in}$.
Weld Size(tw) $=1 / 8^{\prime \prime}=0.170 \mathrm{in} .=2.720$ (Weld Throat for Rod)

EFFECTIVE SLENDERNESS RATIOS TABLE 4.3-1

Maximun Slenderness Ratio (all = allowable)
For Compression member Slenderness Ratio(L/r)all = 200
For Tension member Slenderness Ratio(L/r)all = 240

Data Member

Yield Stress: Fy=50 ksi
Modulus of Elasticity: E=29000 ksi
Area $=0.196$ in^2 $^{\wedge} \mathrm{k}=0.318$ inches
Inertia $x=0.003$ in $^{\wedge} 4, \mathrm{ly}=0.052 \mathrm{in}^{\wedge} 4$
$r x=0.13 \mathrm{in} ; r y=0.13 \mathrm{in} ; \mathrm{y}=0.250 \mathrm{in}$
$\mathrm{rz}=0.125 \mathrm{in} ; \mathrm{Qs}=1.000$
Spacing between chord angles $=0.500$ in $=1 / 2^{\prime \prime}$
Combination; [SW=Self Weight; F=Factor]
COMB1 $=1.00 x D L+1.00 x L L+[S W ~ F=1.00]$
COMB2 $=$ Not Active or Null this Combination
COMB3 $=1.00 \times L L+[$ SW F=1.00]
COMB4 $=0.60 \times D L+1.00 \times U P+[S W F=0.60]$

Summary Combination Maximun Results

COMB	T. FORCE	C. FORCE	SHEAR	MOM(Mi)	MOM(Me)
	Kips	Kips	Kips	K-in	K-in
COMB1	0.000	0.001	0.000	0.000	0.000
COMB2	0.000	0.000	0.000	0.000	0.000
COMB3	0.000	0.000	0.000	0.000	0.000
COMB4	0.003	0.000	0.000	0.000	0.000

Max. Local Shear $(\mathrm{V})=0.000000$ Kips; Location in COMB4
Max. Moment $(\mathrm{Me})=0.000000 \mathrm{~K}$-ft; Location in COMB4
Max. Moment (Mi) $=0.000000$ K-ft; Location in COMB4
Max. Tension $=0.003$ Kips; Location in COMB4
Max. Compresion $=0.001$ Kips; Location in COMB1
Original COMPRESION = YES (Use for internal information only)

Location of Reaction of Force

Max. Reation (Comb. \#4)= -1.894 Kips-Use in web member w/Tension
Max. Reation (Comb. \#1) $=4.207$ Kips-Use in web member w/Compr.

For Web Member Check 25\% of Reaction.

Comp=0.001; Tens=0.003; seno = 0.865; Max. 25\% Reaction
Vertical Shear(Tens) $=0.002$; Vertical Shear(Comp) $=0.000$
Max. Tension $=0.548 \mathrm{Kips}$ (Change)
Max. Comp = 1.052 Kips (Change)

Slenderness Ratio

k For Calculation Fcr per Table 4.3-1
(Comp.) $\mathrm{Kx}=0.75$; $\mathrm{Ky}=0.90$; Kz=0.00

Max. Axial Force Top \& Bottom Chord Local

Max. Compr (top chord) force $=15.790$ Kips in Member \#7; Comb1
Max. Tension (top chord) force $=6.361$ Kips in Member \#7; Comb4
Max. Compr (Bottom chord) force = 6.363 Kips in Member \#20; Comb4
Max. Tension (Bottom chord) force $=15.790$ Kips in Member \#20; Comb1

CHECK SLENDERNESS RATIOS

S.R. $x=\left(L^{*} 12\right) / r x=\left(1.661^{*} 12\right) / 0.125=159.500$
S.R. $y=\left(L^{*} 12\right) / r y=\left(1.661^{*} 12\right) / 0.125=159.500$
S.R. $z=\left(L^{*} 12\right) / r z=\left(1.661^{*} 12\right) / 0.125=159.500$

Control $=159.500$
Comp. Ratio $=$ Control/200 $=159.50 / 200=0.80$
Comp. Status: $0.80<1.00 \ll-$ OK
Tens. Ratio $=$ Control/240 $=159.50 / 240=0.66$
Tens. Status: 0.66 < 1.00 <<-- OK

CHECK COMPRESSION (4.2-4)

Shim, fillers or ties: NOT
S.R. $x=\left(K x^{*} L^{*} 12\right) / r x=\left(0.750^{*} 1.66^{\star} 12\right) / 0.125=119.625$
S.R. $y=\left(k y^{*} L^{*} 12\right) / r y=\left(0.900^{*} 1.66^{*} 12\right) / 0.125=143.550$

SLRgov=143.55
Fy=50.00 ksi;
Area=0.20 in^2;Comp=1.05 kips; fa=Comp/Area=5.36 ksi
$\mathrm{Fe}=13.89 \mathrm{ksi} ; \mathrm{Fcr}=12.18 \mathrm{ksi}$
Fcr=12.18 ksi; Fa=0.6Fcr= 7.31 ksi
IRc=fa/Fa=5.357/7.309=0.730
Comp. Status: 0.73 <= 1.00 <<-- OK

CHECK TENSION (Eq. 4.2-2)

$\mathrm{ft}=$ Tens \times factor/Area $=(0.548 \times 1.000) / 0.196=2.789 \mathrm{ksi}$
$\mathrm{Ft}=0.6(\mathrm{Fy})=0.6 * 50.000=30.000 \mathrm{ksi}$
Ratio $=\mathrm{ft} / \mathrm{Ft}=2.79 / 30.00=0.09$
Status: $0.09<1.00$ <<-- OK

WELDING WEB MEMBER

Strength of E70XX electrodes: Fexx=70 ksi
Force $=1.052$; weld size $=1 / 8^{\prime \prime}$
Lenght weld $=$ Force \times OMEGAw/(2 * Fnw x tef)
Lenght weld $=1.052 \times 2.0 /(2 \times 42.000 .170)=0.147 \mathrm{in}$.
Use: $1 / 8^{\prime \prime} ; 2$ inches Both end (total lenght) [But use 1 in . Min. each leg of each end]
CHECK ECCENTRICITY (4.5.4)
Woking point in both end: 0.0in. OK
This is important to fabrication.

DESIGN MEMBER

INPUT FORM (ASD) Revision SJI 100-2020
Member Number = 38
Serial $=\mathrm{K}$
Member name = Interior web member
Type = Single(2)
Section = 0
Designation $=\mathrm{R} 1 / 2 ; \mathrm{A}=0.196^{\wedge} 2 ; \mathrm{Fy}=50 \mathrm{ksi}$
Reinforcement = NA;
Span design $=260.00$ in
Lenght Member = $1^{\prime}-715 / 16 "=1.661 \mathrm{ft}$. $=19.94 \mathrm{in}$.
Tension \& Compression Factor Design $=1.000$
Max. Code Check Ratio $=1.00$
Ω (Omega) $=1.67=1 / 1.67=0.6$; Spec. Section 4.2.3 Eq. 4.2
Omega Welding $=2.00$ Ref. SJI Spec 4.2.3.4
Min. Thicknees Material $=1 / 8^{\prime \prime}=0.125 \mathrm{in}$.
Weld Size(tw) $=1 / 8^{\prime \prime}=0.170 \mathrm{in} .=2.720$ (Weld Throat for Rod)

EFFECTIVE SLENDERNESS RATIOS TABLE 4.3-1

Maximun Slenderness Ratio (all = allowable)
For Compression member Slenderness Ratio(L/r)all = 200
For Tension member Slenderness Ratio(L/r)all = 240

Data Member

Yield Stress: Fy=50 ksi
Modulus of Elasticity: E=29000 ksi
Area $=0.196$ in^2; $\mathrm{k}=0.318$ inches
Inertia $x=0.003$ in $^{\wedge} 4, \mathrm{ly}=0.052 \mathrm{in}^{\wedge} 4$
$r x=0.13 \mathrm{in} ; r y=0.13 \mathrm{in} ; \mathrm{y}=0.250 \mathrm{in}$
$\mathrm{rz}=0.125 \mathrm{in} ; \mathrm{Qs}=1.000$
Spacing between chord angles $=0.500$ in $=1 / 2^{\prime \prime}$
Combination; [SW=Self Weight; F=Factor]
COMB1 $=1.00 x D L+1.00 x L L+[S W ~ F=1.00]$
COMB2 $=$ Not Active or Null this Combination
COMB3 $=1.00 \times L L+[$ SW F=1.00]
COMB4 $=0.60 \times D L+1.00 \times U P+[S W F=0.60]$

Summary Combination Maximun Results

COMB	T. FORCE Kips	C. FORCE Kips	SHEAR Kips	MOM(Mi) K-in	MOM(Me) K-in
COMB1	0.000	0.001	0.000	0.000	0.000
COMB2	0.000	0.000	0.000	0.000	0.000
COMB3	0.000	0.000	0.000	0.000	0.000
COMB4	0.003	0.000	0.000	0.000	0.000

Max. Local Shear $(\mathrm{V})=0.000000$ Kips; Location in COMB4
Max. Moment $(\mathrm{Me})=0.000000 \mathrm{~K}$-ft; Location in COMB4
Max. Moment (Mi) $=0.000000$ K-ft; Location in COMB4
Max. Tension $=0.003$ Kips; Location in COMB4
Max. Compresion $=0.001$ Kips; Location in COMB1
Original COMPRESION = YES (Use for internal information only)

Location of Reaction of Force

Max. Reation (Comb. \#4)= -1.894 Kips-Use in web member w/Tension
Max. Reation (Comb. \#1) $=4.207$ Kips-Use in web member w/Compr.

For Web Member Check 25\% of Reaction.

Comp=0.001; Tens=0.003; seno = 0.865; Max. 25\% Reaction
Vertical Shear(Tens) $=0.002$; Vertical Shear(Comp) $=0.000$
Max. Tension $=0.548 \mathrm{Kips}$ (Change)
Max. Comp = 1.052 Kips (Change)

Slenderness Ratio

k For Calculation Fcr per Table 4.3-1
(Comp.) $\mathrm{Kx}=0.75$; $\mathrm{Ky}=0.90$; Kz=0.00

Max. Axial Force Top \& Bottom Chord Local

Max. Compr (top chord) force $=15.790$ Kips in Member \#7; Comb1
Max. Tension (top chord) force $=6.361$ Kips in Member \#7; Comb4
Max. Compr (Bottom chord) force = 6.363 Kips in Member \#20; Comb4
Max. Tension (Bottom chord) force $=15.790$ Kips in Member \#20; Comb1

CHECK SLENDERNESS RATIOS

S.R. $x=\left(L^{*} 12\right) / r x=\left(1.661^{*} 12\right) / 0.125=159.500$
S.R. $y=\left(L^{*} 12\right) / r y=\left(1.661^{*} 12\right) / 0.125=159.500$
S.R. $z=\left(L^{*} 12\right) / r z=\left(1.661^{*} 12\right) / 0.125=159.500$

Control $=159.500$
Comp. Ratio $=$ Control/200 $=159.50 / 200=0.80$
Comp. Status: $0.80<1.00 \ll-$ OK
Tens. Ratio $=$ Control/240 $=159.50 / 240=0.66$
Tens. Status: 0.66 < 1.00 <<-- OK

CHECK COMPRESSION (4.2-4)

Shim, fillers or ties: NOT
S.R. $x=\left(K x^{*} L^{*} 12\right) / r x=\left(0.750^{*} 1.66^{\star} 12\right) / 0.125=119.625$
S.R. $y=\left(k y^{*} L^{*} 12\right) / r y=\left(0.900^{*} 1.66^{*} 12\right) / 0.125=143.550$

SLRgov=143.55
Fy=50.00 ksi;
Area=0.20 in^2;Comp=1.05 kips; fa=Comp/Area=5.36 ksi
$\mathrm{Fe}=13.89 \mathrm{ksi} ; \mathrm{Fcr}=12.18 \mathrm{ksi}$
Fcr=12.18 ksi; Fa=0.6Fcr= 7.31 ksi
IRc=fa/Fa=5.357/7.309=0.730
Comp. Status: 0.73 <= 1.00 <<-- OK

CHECK TENSION (Eq. 4.2-2)

$\mathrm{ft}=$ Tens \times factor/Area $=(0.548 \times 1.000) / 0.196=2.789 \mathrm{ksi}$
$\mathrm{Ft}=0.6(\mathrm{Fy})=0.6 * 50.000=30.000 \mathrm{ksi}$
Ratio $=\mathrm{ft} / \mathrm{Ft}=2.79 / 30.00=0.09$
Status: $0.09<1.00$ <<-- OK

WELDING WEB MEMBER

Strength of E70XX electrodes: Fexx=70 ksi
Force $=1.052$; weld size $=1 / 8^{\prime \prime}$
Lenght weld $=$ Force \times OMEGAw/(2 * Fnw x tef)
Lenght weld $=1.052 \times 2.0 /(2 \times 42.000 .170)=0.147 \mathrm{in}$.
Use: $1 / 8^{\prime \prime} ; 2$ inches Both end (total lenght) [But use 1 in . Min. each leg of each end]
CHECK ECCENTRICITY (4.5.4)
Woking point in both end: 0.0in. OK
This is important to fabrication.

DESIGN MEMBER

INPUT FORM (ASD) Revision SJI 100-2020
Member Number = 39
Serial $=\mathrm{K}$
Member name = Interior web member
Type = Single(2)
Section = 0
Designation $=\mathrm{R} 1 / 2 ; \mathrm{A}=0.196^{\wedge} 2 ; \mathrm{Fy}=50 \mathrm{ksi}$
Reinforcement = NA;
Span design = 260.00 in
Lenght Member = $1^{\prime}-715 / 16 "=1.661 \mathrm{ft}$. $=19.94 \mathrm{in}$.
Tension \& Compression Factor Design $=1.000$
Max. Code Check Ratio = 1.00
Ω (Omega) $=1.67=1 / 1.67=0.6$; Spec. Section 4.2.3 Eq. 4.2
Omega Welding $=2.00$ Ref. SJI Spec 4.2.3.4
Min. Thicknees Material $=1 / 8^{\prime \prime}=0.125 \mathrm{in}$.
Weld Size(tw) $=1 / 8^{\prime \prime}=0.170 \mathrm{in} .=2.720$ (Weld Throat for Rod)

EFFECTIVE SLENDERNESS RATIOS TABLE 4.3-1

Maximun Slenderness Ratio (all = allowable)
For Compression member Slenderness Ratio(L/r)all = 200
For Tension member Slenderness Ratio(L/r)all = 240

Data Member

Yield Stress: Fy=50 ksi
Modulus of Elasticity: E=29000 ksi
Area $=0.196$ in^2 $^{\wedge} \mathrm{k}=0.318$ inches
Inertia $x=0.003$ in $^{\wedge} 4, \mathrm{ly}=0.052 \mathrm{in}^{\wedge} 4$
$r x=0.13 \mathrm{in} ; r y=0.13 \mathrm{in} ; \mathrm{y}=0.250 \mathrm{in}$
$\mathrm{rz}=0.125 \mathrm{in} ; \mathrm{Qs}=1.000$
Spacing between chord angles $=0.500$ in $=1 / 2^{\prime \prime}$
Combination; [SW=Self Weight; F=Factor]
COMB1 $=1.00 x D L+1.00 x L L+[S W ~ F=1.00]$
COMB2 $=$ Not Active or Null this Combination
COMB3 $=1.00 \times L L+[$ SW F=1.00]
COMB4 $=0.60 \times D L+1.00 \times U P+[S W F=0.60]$

Summary Combination Maximun Results

COMB	T. FORCE Kips	C. FORCE Kips	SHEAR Kips	MOM(Mi) K-in	MOM(Me) K-in
COMB1	0.000	0.739	0.000	0.000	0.000
COMB2	0.000	0.000	0.000	0.000	0.000
COMB3	0.000	0.613	0.000	0.000	0.000
COMB4	0.255	0.000	0.000	0.000	0.000

Max. Local Shear $(\mathrm{V})=0.000000$ Kips; Location in COMB4
Max. Moment $(\mathrm{Me})=0.000000 \mathrm{~K}$-ft; Location in COMB4
Max. Moment (Mi) $=0.000000$ K-ft; Location in COMB4
Max. Tension $=0.255$ Kips; Location in COMB4
Max. Compresion $=0.739$ Kips; Location in COMB1
Original COMPRESION = YES (Use for internal information only)

Location of Reaction of Force

Max. Reation (Comb. \#4)= -1.894 Kips-Use in web member w/Tension
Max. Reation (Comb. \#1) $=4.207$ Kips-Use in web member w/Compr.

For Web Member Check 25\% of Reaction.

Comp=0.739; Tens=0.255; seno = 0.865; Max. 25\% Reaction
Vertical Shear(Tens) $=0.221$; Vertical Shear(Comp) $=0.639$
Max. Tension $=0.548 \mathrm{Kips}$ (Change)
Max. Comp = 1.052 Kips (Change)

Slenderness Ratio

k For Calculation Fcr per Table 4.3-1
(Comp.) $\mathrm{Kx}=0.75$; $\mathrm{Ky}=0.90$; Kz=0.00

Max. Axial Force Top \& Bottom Chord Local

Max. Compr (top chord) force $=15.790$ Kips in Member \#7; Comb1
Max. Tension (top chord) force $=6.361$ Kips in Member \#7; Comb4
Max. Compr (Bottom chord) force = 6.363 Kips in Member \#20; Comb4
Max. Tension (Bottom chord) force $=15.790$ Kips in Member \#20; Comb1

CHECK SLENDERNESS RATIOS

S.R. $x=\left(L^{*} 12\right) / r x=\left(1.661^{*} 12\right) / 0.125=159.500$
S.R. $y=\left(L^{*} 12\right) / r y=\left(1.661^{*} 12\right) / 0.125=159.500$
S.R. $z=\left(L^{*} 12\right) / r z=\left(1.661^{*} 12\right) / 0.125=159.500$

Control $=159.500$
Comp. Ratio $=$ Control/200 $=159.50 / 200=0.80$
Comp. Status: $0.80<1.00 \ll-$ OK
Tens. Ratio $=$ Control/240 $=159.50 / 240=0.66$
Tens. Status: 0.66 < 1.00 <<-- OK

CHECK COMPRESSION (4.2-4)

Shim, fillers or ties: NOT
S.R. $x=\left(K x^{*} L^{*} 12\right) / r x=\left(0.750^{*} 1.66^{\star} 12\right) / 0.125=119.625$
S.R. $y=\left(k y^{*} L^{*} 12\right) / r y=\left(0.900^{*} 1.66^{*} 12\right) / 0.125=143.550$

SLRgov=143.55
Fy=50.00 ksi;
Area=0.20 in^2;Comp=1.05 kips; fa=Comp/Area=5.36 ksi
$\mathrm{Fe}=13.89 \mathrm{ksi} ; \mathrm{Fcr}=12.18 \mathrm{ksi}$
Fcr=12.18 ksi; Fa=0.6Fcr= 7.31 ksi
IRc=fa/Fa=5.357/7.309=0.730
Comp. Status: 0.73 <= 1.00 <<-- OK

CHECK TENSION (Eq. 4.2-2)

$\mathrm{ft}=$ Tens \times factor/Area $=(0.548 \times 1.000) / 0.196=2.789 \mathrm{ksi}$
$\mathrm{Ft}=0.6(\mathrm{Fy})=0.6 * 50.000=30.000 \mathrm{ksi}$
Ratio $=\mathrm{ft} / \mathrm{Ft}=2.79 / 30.00=0.09$
Status: $0.09<1.00$ <<-- OK

WELDING WEB MEMBER

Strength of E70XX electrodes: Fexx=70 ksi
Force $=1.052$; weld size $=1 / 8^{\prime \prime}$
Lenght weld $=$ Force \times OMEGAw/(2 * Fnw x tef)
Lenght weld $=1.052 \times 2.0 /(2 \times 42.000 .170)=0.147 \mathrm{in}$.
Use: $1 / 8^{\prime \prime} ; 2$ inches Both end (total lenght) [But use 1 in . Min. each leg of each end]
CHECK ECCENTRICITY (4.5.4)
Woking point in both end: 0.0in. OK
This is important to fabrication.

DESIGN MEMBER

INPUT FORM (ASD) Revision SJI 100-2020
Member Number = 40
Serial $=\mathrm{K}$
Member name = Interior web member
Type = Single(2)
Section = 0
Designation $=\mathrm{R} 5 / 8 ; \mathrm{A}=0.307^{\wedge} 2 ; \mathrm{Fy}=50 \mathrm{ksi}$
Reinforcement = NA;
Span design = 260.00 in
Lenght Member = $1^{\prime}-715 / 16 "=1.661 \mathrm{ft}$. $=19.94 \mathrm{in}$.
Tension \& Compression Factor Design $=1.000$
Max. Code Check Ratio = 1.00
Ω (Omega) $=1.67=1 / 1.67=0.6$; Spec. Section 4.2.3 Eq. 4.2
Omega Welding $=2.00$ Ref. SJI Spec 4.2.3.4
Min. Thicknees Material $=1 / 8^{\prime \prime}=0.125 \mathrm{in}$.
Weld Size(tw) $=1 / 8^{\prime \prime}=0.185 \mathrm{in} .=2.960$ (Weld Throat for Rod)

EFFECTIVE SLENDERNESS RATIOS TABLE 4.3-1

Maximun Slenderness Ratio (all = allowable)
For Compression member Slenderness Ratio(L/r)all = 200
For Tension member Slenderness Ratio(L/r)all = 240

Data Member

Yield Stress: Fy=50 ksi
Modulus of Elasticity: E=29000 ksi
Area $=0.307$ in^2; $\mathrm{k}=0.318$ inches
Inertia $x=0.007$ in $^{\wedge} 4, \mathrm{ly}=0.105 \mathrm{in}^{\wedge} 4$
$r x=0.16 \mathrm{in} ; r y=0.16 \mathrm{in} ; \mathrm{y}=0.313 \mathrm{in}$
$\mathrm{rz}=0.156 \mathrm{in} ; \mathrm{Qs}=1.000$
Spacing between chord angles $=0.500$ in $=1 / 2^{\prime \prime}$
Combination; [SW=Self Weight; F=Factor]
COMB1 $=1.00 x D L+1.00 x L L+[S W ~ F=1.00]$
COMB2 $=$ Not Active or Null this Combination
COMB3 $=1.00 \times L L+[$ SW F=1.00]
COMB4 $=0.60 \times D L+1.00 \times U P+[S W F=0.60]$

Summary Combination Maximun Results

COMB	T. FORCE Kips	C. FORCE Kips	SHEAR Kips	MOM(Mi) K-in	MOM(Me) K-in
COMB1	0.748	0.000	0.000	0.000	0.000
COMB2	0.000	0.000	0.000	0.000	0.000
COMB3	0.621	0.000	0.000	0.000	0.000
COMB4	0.000	0.253	0.000	0.000	0.000

Max. Local Shear $(\mathrm{V})=0.000000$ Kips; Location in COMB4
Max. Moment $(\mathrm{Me})=0.000000 \mathrm{~K}$-ft; Location in COMB4
Max. Moment $(\mathrm{Mi})=0.000000$ K-ft; Location in COMB4
Max. Tension $=0.748$ Kips; Location in COMB1
Max. Compresion $=0.253$ Kips; Location in COMB4
Original COMPRESION = YES (Use for internal information only)

Location of Reaction of Force

Max. Reation (Comb. \#4)= -1.894 Kips-Use in web member w/Tension
Max. Reation (Comb. \#1) $=4.207$ Kips-Use in web member w/Compr.

For Web Member Check 25\% of Reaction.

Comp=0.253; Tens=0.748; seno = 0.865; Max. 25\% Reaction
Vertical Shear(Tens) $=0.647$; Vertical Shear(Comp) $=0.219$
Max. Tension $=0.748 \mathrm{Kips} ;$ (Not Change)
Max. Comp = 1.052 Kips (Change)

Slenderness Ratio

k For Calculation Fcr per Table 4.3-1
(Comp.) Kx=0.75; Ky=0.90; Kz=0.00

Max. Axial Force Top \& Bottom Chord Local

Max. Compr (top chord) force $=15.790$ Kips in Member \#7; Comb1
Max. Tension (top chord) force $=6.361$ Kips in Member \#7; Comb4
Max. Compr (Bottom chord) force = 6.363 Kips in Member \#20; Comb4
Max. Tension (Bottom chord) force $=15.790$ Kips in Member \#20; Comb1

CHECK SLENDERNESS RATIOS

S.R. $x=\left(L^{*} 12\right) / r x=\left(1.661^{*} 12\right) / 0.156=127.600$
S.R. $y=\left(L^{*} 12\right) / r y=\left(1.661^{*} 12\right) / 0.156=127.600$
S.R. $z=\left(L^{*} 12\right) / r z=\left(1.661^{*} 12\right) / 0.156=127.600$

Control $=127.600$
Comp. Ratio $=$ Control/200 $=127.60 / 200=0.64$
Comp. Status: $0.64<1.00 \ll--$ OK
Tens. Ratio $=$ Control/ $240=127.60 / 240=0.53$
Tens. Status: $0.53<1.00 \ll-$ OK

CHECK COMPRESSION (4.2-4)

Shim, fillers or ties: NOT
S.R. $x=\left(K x^{*} L^{*} 12\right) / r x=\left(0.750^{*} 1.66^{*} 12\right) / 0.156=95.700$
S.R. $y=\left(k y^{*} L^{*} 12\right) / r y=\left(0.900^{*} 1.66^{*} 12\right) / 0.156=114.840$

SLRgov=114.84
Fy=50.00 ksi;
Area=0.31 in^2;Comp=1.05 kips; fa=Comp/Area=3.43 ksi
$\mathrm{Fe}=21.70 \mathrm{ksi} ; \mathrm{Fcr}=19.03 \mathrm{ksi}$
Fcr= $19.03 \mathrm{ksi} ;$ Fa=0.6Fcr= 11.42 ksi
IRc=fa/Fa=3.428/11.420=0.300
Comp. Status: $0.30<=1.00 \ll-$ OK
CHECK TENSION (Eq. 4.2-2)
$\mathrm{ft}=$ Tens \times factor/Area $=(0.748 \times 1.000) / 0.307=2.437 \mathrm{ksi}$
$\mathrm{Ft}=0.6(\mathrm{Fy})=0.6 * 50.000=30.000 \mathrm{ksi}$
Ratio $=\mathrm{ft} / \mathrm{Ft}=2.44 / 30.00=0.08$
Status: $0.08<1.00$ <<-- OK

WELDING WEB MEMBER

Strength of E70XX electrodes: Fexx=70 ksi
Force $=1.052$; weld size $=1 / 8^{\prime \prime}$
Lenght weld $=$ Force \times OMEGAw/(2 * Fnw x tef)
Lenght weld $=1.052 \times 2.0 /(2 \times 42.000 .185)=0.135 \mathrm{in}$.
Use: $1 / 8$ " $; 2$ inches Both end (total lenght) [But use 1 in . Min. each leg of each end]
CHECK ECCENTRICITY (4.5.4)
Woking point in both end: 0.0in. OK
This is important to fabrication.

DESIGN MEMBER

INPUT FORM (ASD) Revision SJI 100-2020
Member Number = 41
Serial $=\mathrm{K}$
Member name = Interior web member
Type = Single(2)
Section = 0
Designation $=\mathrm{R} 5 / 8 ; \mathrm{A}=0.307^{\wedge} 2 ; \mathrm{Fy}=50 \mathrm{ksi}$
Reinforcement = NA;
Span design = 260.00 in
Lenght Member = $1^{\prime}-715 / 16^{\prime \prime}=1.661 \mathrm{ft}$. $=19.94 \mathrm{in}$.
Tension \& Compression Factor Design $=1.000$
Max. Code Check Ratio = 1.00
Ω (Omega) $=1.67=1 / 1.67=0.6$; Spec. Section 4.2.3 Eq. 4.2
Omega Welding $=2.00$ Ref. SJI Spec 4.2.3.4
Min. Thicknees Material $=1 / 8^{\prime \prime}=0.125 \mathrm{in}$.
Weld Size(tw) $=1 / 8^{\prime \prime}=0.185 \mathrm{in} .=2.960$ (Weld Throat for Rod)

EFFECTIVE SLENDERNESS RATIOS TABLE 4.3-1

Maximun Slenderness Ratio (all = allowable)
For Compression member Slenderness Ratio(L/r)all = 200
For Tension member Slenderness Ratio(L/r)all = 240

Data Member

Yield Stress: Fy=50 ksi
Modulus of Elasticity: E=29000 ksi
Area $=0.307$ in^2; $\mathrm{k}=0.318$ inches
Inertia $x=0.007$ in $^{\wedge} 4, \mathrm{ly}=0.105 \mathrm{in}^{\wedge} 4$
$r x=0.16 \mathrm{in} ; r y=0.16 \mathrm{in} ; \mathrm{y}=0.313 \mathrm{in}$
$\mathrm{rz}=0.156 \mathrm{in} ; \mathrm{Qs}=1.000$
Spacing between chord angles $=0.500$ in $=1 / 2^{\prime \prime}$
Combination; [SW=Self Weight; F=Factor]
COMB1 $=1.00 x D L+1.00 x L L+[S W ~ F=1.00]$
COMB2 $=$ Not Active or Null this Combination
COMB3 $=1.00 \times L L+[$ SW F=1.00]
COMB4 $=0.60 \times D L+1.00 \times U P+[S W F=0.60]$

Summary Combination Maximun Results

COMB	T. FORCE Kips	C. FORCE Kips	SHEAR Kips	MOM(Mi) K-in	MOM(Me) K-in
COMB1	0.000	1.490	0.000	0.000	0.000
COMB2	0.000	0.000	0.000	0.000	0.000
COMB3	0.000	1.236	0.000	0.000	0.000
COMB4	0.502	0.000	0.000	0.000	0.000

Max. Local Shear $(\mathrm{V})=0.000000$ Kips; Location in COMB4
Max. Moment $(\mathrm{Me})=0.000000 \mathrm{~K}$-ft; Location in COMB4
Max. Moment $(\mathrm{Mi})=0.000000$ K-ft; Location in COMB4
Max. Tension $=0.502$ Kips; Location in COMB4
Max. Compresion $=1.490$ Kips; Location in COMB1
Original COMPRESION = YES (Use for internal information only)

Location of Reaction of Force

Max. Reation (Comb. \#4)= -1.894 Kips-Use in web member w/Tension
Max. Reation (Comb. \#1) $=4.207$ Kips-Use in web member w/Compr.

For Web Member Check 25\% of Reaction.

Comp=1.490; Tens=0.502; seno = 0.865; Max. 25\% Reaction
Vertical Shear(Tens) $=0.434$; Vertical Shear(Comp) $=1.289$
Max. Tension $=0.548 \mathrm{Kips}$ (Change)
Max. Compresion $=1.490$ Kips; (Not Change)

Slenderness Ratio

k For Calculation Fcr per Table 4.3-1
(Comp.) $\mathrm{Kx}=0.75$; $\mathrm{Ky}=0.90$; Kz=0.00

Max. Axial Force Top \& Bottom Chord Local

Max. Compr (top chord) force $=15.790$ Kips in Member \#7; Comb1
Max. Tension (top chord) force $=6.361$ Kips in Member \#7; Comb4
Max. Compr (Bottom chord) force = 6.363 Kips in Member \#20; Comb4
Max. Tension (Bottom chord) force $=15.790$ Kips in Member \#20; Comb1

CHECK SLENDERNESS RATIOS

S.R. $x=\left(L^{*} 12\right) / r x=\left(1.661^{*} 12\right) / 0.156=127.600$
S.R. $y=\left(L^{*} 12\right) / r y=\left(1.661^{*} 12\right) / 0.156=127.600$
S.R. $z=\left(L^{*} 12\right) / r z=\left(1.661^{*} 12\right) / 0.156=127.600$

Control = 127.600
Comp. Ratio $=$ Control/200 $=127.60 / 200=0.64$
Comp. Status: $0.64<1.00 \ll--$ OK
Tens. Ratio $=$ Control/ $240=127.60 / 240=0.53$
Tens. Status: $0.53<1.00 \ll-$ OK

CHECK COMPRESSION (4.2-4)

Shim, fillers or ties: NOT
S.R. $x=\left(K x^{*} L^{*} 12\right) / r x=\left(0.750^{*} 1.66^{*} 12\right) / 0.156=95.700$
S.R. $y=\left(k y^{*} L^{*} 12\right) / r y=\left(0.900^{*} 1.66^{*} 12\right) / 0.156=114.840$

SLRgov=114.84
Fy=50.00 ksi;
Area=0.31 in^2;Comp=1.49 kips; fa=Comp/Area=4.86 ksi
$\mathrm{Fe}=21.70 \mathrm{ksi} ; \mathrm{Fcr}=19.03 \mathrm{ksi}$
Fcr= $19.03 \mathrm{ksi} ;$ Fa=0.6Fcr= 11.42 ksi
IRc=fa/Fa=4.858/11.420=0.430
Comp. Status: 0.43 <= 1.00 <<-- OK
CHECK TENSION (Eq. 4.2-2)
$\mathrm{ft}=$ Tens \times factor/Area $=(0.548 \times 1.000) / 0.307=1.785 \mathrm{ksi}$
$\mathrm{Ft}=0.6(\mathrm{Fy})=0.6 * 50.000=30.000 \mathrm{ksi}$
Ratio $=\mathrm{ft} / \mathrm{Ft}=1.78 / 30.00=0.06$
Status: $0.06<1.00 \ll--$ OK

WELDING WEB MEMBER

Strength of E70XX electrodes: Fexx=70 ksi
Force $=1.490$; weld size $=1 / 8^{\prime \prime}$
Lenght weld $=$ Force \times OMEGAw/(2 * Fnw x tef)
Lenght weld $=1.490 \times 2.0 /(2 \times 42.000 .185)=0.192 \mathrm{in}$.
Use: $1 / 8^{\prime \prime} ; 2$ inches Both end (total lenght) [But use 1 in . Min. each leg of each end]
CHECK ECCENTRICITY (4.5.4)
Woking point in both end: 0.0in. OK
This is important to fabrication.

DESIGN MEMBER

INPUT FORM (ASD) Revision SJI 100-2020
Member Number = 42
Serial $=\mathrm{K}$
Member name = Interior web member
Type = Single(2)
Section = 0
Designation $=\mathrm{R} 5 / 8 ; \mathrm{A}=0.307^{\wedge} 2 ; \mathrm{Fy}=50 \mathrm{ksi}$
Reinforcement = NA;
Span design $=260.00$ in
Lenght Member = $1^{\prime}-715 / 16 "=1.661 \mathrm{ft}$. $=19.94 \mathrm{in}$.
Tension \& Compression Factor Design $=1.000$
Max. Code Check Ratio = 1.00
Ω (Omega) $=1.67=1 / 1.67=0.6$; Spec. Section 4.2.3 Eq. 4.2
Omega Welding $=2.00$ Ref. SJI Spec 4.2.3.4
Min. Thicknees Material $=1 / 8^{\prime \prime}=0.125 \mathrm{in}$.
Weld Size(tw) $=1 / 8^{\prime \prime}=0.185 \mathrm{in} .=2.960$ (Weld Throat for Rod)

EFFECTIVE SLENDERNESS RATIOS TABLE 4.3-1

Maximun Slenderness Ratio (all = allowable)
For Compression member Slenderness Ratio(L/r)all = 200
For Tension member Slenderness Ratio(L/r)all = 240

Data Member

Yield Stress: Fy=50 ksi
Modulus of Elasticity: E=29000 ksi
Area $=0.307$ in^2; $\mathrm{k}=0.318$ inches
Inertia $x=0.007$ in $^{\wedge} 4$, ly $=0.105$ in^^ $^{\wedge}$
$r x=0.16 \mathrm{in} ; r y=0.16 \mathrm{in} ; \mathrm{y}=0.313 \mathrm{in}$
$\mathrm{rz}=0.156 \mathrm{in} ; \mathrm{Qs}=1.000$
Spacing between chord angles $=0.500$ in $=1 / 2^{\prime \prime}$
Combination; [SW=Self Weight; F=Factor]
COMB1 $=1.00 x D L+1.00 x L L+[S W ~ F=1.00]$
COMB2 $=$ Not Active or Null this Combination
COMB3 $=1.00 \times L L+[$ SW F=1.00]
COMB4 $=0.60 \times D L+1.00 \times U P+[S W F=0.60]$

Summary Combination Maximun Results

COMB	T. FORCE Kips	C. FORCE Kips	SHEAR Kips	MOM(Mi) K-in	MOM(Me) K-in
COMB1	1.494	0.000	0.000	0.000	0.000
COMB2	0.000	0.000	0.000	0.000	0.000
COMB3	1.241	0.000	0.000	0.000	0.000
COMB4	0.000	0.498	0.000	0.000	0.000

Max. Local Shear $(\mathrm{V})=0.000000$ Kips; Location in COMB4
Max. Moment $(\mathrm{Me})=0.000000 \mathrm{~K}$-ft; Location in COMB4
Max. Moment $(\mathrm{Mi})=0.000000$ K-ft; Location in COMB4
Max. Tension = 1.494 Kips; Location in COMB1
Max. Compresion $=0.498$ Kips; Location in COMB4
Original COMPRESION = YES (Use for internal information only)

Location of Reaction of Force

Max. Reation (Comb. \#4)= -1.894 Kips-Use in web member w/Tension
Max. Reation (Comb. \#1) $=4.207$ Kips-Use in web member w/Compr.

For Web Member Check 25\% of Reaction.

Comp=0.498; Tens=1.494; seno = 0.865; Max. 25\% Reaction
Vertical Shear(Tens) $=1.292$; Vertical Shear(Comp) $=0.431$
Max. Tension = $1.494 \mathrm{Kips} ;$ (Not Change)
Max. Comp = 1.052 Kips (Change)

Slenderness Ratio

k For Calculation Fcr per Table 4.3-1
(Comp.) Kx=0.75; Ky=0.90; Kz=0.00

Max. Axial Force Top \& Bottom Chord Local

Max. Compr (top chord) force $=15.790$ Kips in Member \#7; Comb1
Max. Tension (top chord) force $=6.361$ Kips in Member \#7; Comb4
Max. Compr (Bottom chord) force = 6.363 Kips in Member \#20; Comb4
Max. Tension (Bottom chord) force $=15.790$ Kips in Member \#20; Comb1

CHECK SLENDERNESS RATIOS

S.R. $x=\left(L^{*} 12\right) / r x=\left(1.661^{*} 12\right) / 0.156=127.600$
S.R. $y=\left(L^{*} 12\right) / r y=\left(1.661^{*} 12\right) / 0.156=127.600$
S.R. $z=\left(L^{*} 12\right) / r z=\left(1.661^{*} 12\right) / 0.156=127.600$

Control $=127.600$
Comp. Ratio $=$ Control $/ 200=127.60 / 200=0.64$
Comp. Status: $0.64<1.00 \ll--$ OK
Tens. Ratio $=$ Control/ $240=127.60 / 240=0.53$
Tens. Status: $0.53<1.00 \ll-$ OK

CHECK COMPRESSION (4.2-4)

Shim, fillers or ties: NOT
S.R. $x=\left(K x^{*} L^{*} 12\right) / r x=\left(0.750^{*} 1.66^{*} 12\right) / 0.156=95.700$
S.R. $y=\left(k y^{*} L^{*} 12\right) / r y=\left(0.900^{*} 1.66^{*} 12\right) / 0.156=114.840$

SLRgov=114.84
Fy=50.00 ksi;
Area=0.31 in^2;Comp=1.05 kips; fa=Comp/Area=3.43 ksi
$\mathrm{Fe}=21.70 \mathrm{ksi} ; \mathrm{Fcr}=19.03 \mathrm{ksi}$
Fcr= $19.03 \mathrm{ksi} ;$ Fa=0.6Fcr= 11.42 ksi
IRc=fa/Fa=3.428/11.420=0.300
Comp. Status: $0.30<=1.00 \ll-$ OK
CHECK TENSION (Eq. 4.2-2)
$\mathrm{ft}=$ Tens \times factor/Area $=(1.494 \times 1.000) / 0.307=4.870 \mathrm{ksi}$
$\mathrm{Ft}=0.6(\mathrm{Fy})=0.6 * 50.000=30.000 \mathrm{ksi}$
Ratio $=\mathrm{ft} / \mathrm{Ft}=4.87 / 30.00=0.16$
Status: $0.16<1.00 \ll--$ OK

WELDING WEB MEMBER

Strength of E70XX electrodes: Fexx=70 ksi
Force $=1.494$; weld size $=1 / 8^{\prime \prime}$
Lenght weld $=$ Force \times OMEGAw/(2 * Fnw x tef)
Lenght weld $=1.494 \times 2.0 /(2 \times 42.000 .185)=0.192 \mathrm{in}$.
Use: $1 / 8$ " $; 2$ inches Both end (total lenght) [But use 1 in . Min. each leg of each end]
CHECK ECCENTRICITY (4.5.4)
Woking point in both end: 0.0in. OK
This is important to fabrication.

DESIGN MEMBER

INPUT FORM (ASD) Revision SJI 100-2020
Member Number = 43
Serial $=\mathrm{K}$
Member name = Interior web member
Type = Single(2)
Section = 0
Designation $=\mathrm{R} 5 / 8 ; \mathrm{A}=0.307^{\wedge} 2 ; \mathrm{Fy}=50 \mathrm{ksi}$
Reinforcement = NA;
Span design = 260.00 in
Lenght Member $=1^{\prime}-715 / 16^{\prime \prime}=1.661 \mathrm{ft}$. $=19.94 \mathrm{in}$.
Tension \& Compression Factor Design $=1.000$
Max. Code Check Ratio = 1.00
Ω (Omega) $=1.67=1 / 1.67=0.6$; Spec. Section 4.2.3 Eq. 4.2
Omega Welding $=2.00$ Ref. SJI Spec 4.2.3.4
Min. Thicknees Material $=1 / 8^{\prime \prime}=0.125 \mathrm{in}$.
Weld Size(tw) $=1 / 8^{\prime \prime}=0.185 \mathrm{in} .=2.960$ (Weld Throat for Rod)

EFFECTIVE SLENDERNESS RATIOS TABLE 4.3-1

Maximun Slenderness Ratio (all = allowable)
For Compression member Slenderness Ratio(L/r)all = 200
For Tension member Slenderness Ratio(L/r)all = 240

Data Member

Yield Stress: Fy=50 ksi
Modulus of Elasticity: E=29000 ksi
Area $=0.307$ in^2; $\mathrm{k}=0.318$ inches
Inertia $x=0.007$ in $^{\wedge} 4, \mathrm{ly}=0.105 \mathrm{in}^{\wedge} 4$
$r x=0.16 \mathrm{in} ; r y=0.16 \mathrm{in} ; \mathrm{y}=0.313 \mathrm{in}$
$\mathrm{rz}=0.156 \mathrm{in} ; \mathrm{Qs}=1.000$
Spacing between chord angles $=0.500$ in $=1 / 2^{\prime \prime}$
Combination; [SW=Self Weight; F=Factor]
COMB1 $=1.00 x D L+1.00 x L L+[S W ~ F=1.00]$
COMB2 $=$ Not Active or Null this Combination
COMB3 $=1.00 \times L L+[$ SW F=1.00]
COMB4 $=0.60 \times D L+1.00 \times U P+[S W F=0.60]$

Summary Combination Maximun Results

COMB	T. FORCE Kips	C. FORCE Kips	SHEAR Kips	MOM(Mi) K-in	MOM(Me) K-in
COMB1	0.000	2.247	0.000	0.000	0.000
COMB2	0.000	0.000	0.000	0.000	0.000
COMB3	0.000	1.864	0.000	0.000	0.000
COMB4	0.797	0.000	0.000	0.000	0.000

Max. Local Shear $(\mathrm{V})=0.000000$ Kips; Location in COMB4
Max. Moment $(\mathrm{Me})=0.000000 \mathrm{~K}$-ft; Location in COMB4
Max. Moment (Mi) $=0.000000$ K-ft; Location in COMB4
Max. Tension $=0.797$ Kips; Location in COMB4
Max. Compresion = 2.247 Kips; Location in COMB1
Original COMPRESION = YES (Use for internal information only)

Location of Reaction of Force

Max. Reation (Comb. \#4)= -1.894 Kips-Use in web member w/Tension
Max. Reation (Comb. \#1) $=4.207$ Kips-Use in web member w/Compr.

For Web Member Check 25\% of Reaction.

Comp=2.247; Tens=0.797; seno = 0.865; Max. 25\% Reaction
Vertical Shear(Tens) $=0.689$; Vertical Shear(Comp) $=1.943$
Max. Tension $=0.797$ Kips; (Not Change)
Max. Compresion = 2.247 Kips; (Not Change)

Slenderness Ratio

k For Calculation Fcr per Table 4.3-1
(Comp.) Kx=0.75; Ky=0.90; Kz=0.00

Max. Axial Force Top \& Bottom Chord Local

Max. Compr (top chord) force $=15.790$ Kips in Member \#7; Comb1
Max. Tension (top chord) force $=6.361$ Kips in Member \#7; Comb4
Max. Compr (Bottom chord) force = 6.363 Kips in Member \#20; Comb4
Max. Tension (Bottom chord) force $=15.790$ Kips in Member \#20; Comb1

CHECK SLENDERNESS RATIOS

S.R. $x=\left(L^{*} 12\right) / r x=\left(1.661^{*} 12\right) / 0.156=127.600$
S.R. $y=\left(L^{*} 12\right) / r y=\left(1.661^{*} 12\right) / 0.156=127.600$
S.R. $z=\left(L^{*} 12\right) / r z=\left(1.661^{*} 12\right) / 0.156=127.600$

Control $=127.600$
Comp. Ratio $=$ Control/200 $=127.60 / 200=0.64$
Comp. Status: $0.64<1.00 \ll--$ OK
Tens. Ratio $=$ Control/ $240=127.60 / 240=0.53$
Tens. Status: $0.53<1.00 \ll-$ OK

CHECK COMPRESSION (4.2-4)

Shim, fillers or ties: NOT
S.R. $x=\left(K x^{*} L^{*} 12\right) / r x=\left(0.750^{*} 1.66^{*} 12\right) / 0.156=95.700$
S.R. $y=\left(k y^{*} L^{*} 12\right) / r y=\left(0.900^{*} 1.66^{*} 12\right) / 0.156=114.840$

SLRgov=114.84
Fy=50.00 ksi;
Area=0.31 in^2;Comp=2.25 kips; fa=Comp/Area=7.32 ksi
$\mathrm{Fe}=21.70 \mathrm{ksi} ; \mathrm{Fcr}=19.03 \mathrm{ksi}$
Fcr=19.03 ksi; Fa=0.6Fcr= 11.42 ksi
IRc=fa/Fa=7.323/11.420=0.640
Comp. Status: 0.64 <= 1.00 <<-- OK
CHECK TENSION (Eq. 4.2-2)
$\mathrm{ft}=$ Tens \times factor/Area $=(0.797 \times 1.000) / 0.307=2.599 \mathrm{ksi}$
$\mathrm{Ft}=0.6(\mathrm{Fy})=0.6 * 50.000=30.000 \mathrm{ksi}$
Ratio $=\mathrm{ft} / \mathrm{Ft}=2.60 / 30.00=0.09$
Status: $0.09<1.00$ <<-- OK

WELDING WEB MEMBER

Strength of E70XX electrodes: Fexx=70 ksi
Force=2.247; weld size $=1 / 8^{\prime \prime}$
Lenght weld $=$ Force \times OMEGAw/(2 * Fnw x tef)
Lenght weld $=2.247 \times 2.0 /(2 \times 42.000 .185)=0.289 \mathrm{in}$.
Use: $1 / 8$ " ; 2 inches Both end (total lenght) [But use 1 in . Min. each leg of each end]
CHECK ECCENTRICITY (4.5.4)
Woking point in both end: 0.0in. OK
This is important to fabrication.

DESIGN MEMBER

INPUT FORM (ASD) Revision SJI 100-2020
Member Number = 44
Serial $=\mathrm{K}$
Member name = Interior web member
Type = Single(2)
Section = 0
Designation $=\mathrm{R} 5 / 8 ; \mathrm{A}=0.307^{\wedge} 2 ; \mathrm{Fy}=50 \mathrm{ksi}$
Reinforcement = NA;
Span design = 260.00 in
Lenght Member = $1^{\prime}-715 / 16 "=1.661 \mathrm{ft}$. $=19.94 \mathrm{in}$.
Tension \& Compression Factor Design $=1.000$
Max. Code Check Ratio = 1.00
Ω (Omega) $=1.67=1 / 1.67=0.6$; Spec. Section 4.2.3 Eq. 4.2
Omega Welding $=2.00$ Ref. SJI Spec 4.2.3.4
Min. Thicknees Material $=1 / 8^{\prime \prime}=0.125 \mathrm{in}$.
Weld Size(tw) $=1 / 8^{\prime \prime}=0.185 \mathrm{in} .=2.960$ (Weld Throat for Rod)

EFFECTIVE SLENDERNESS RATIOS TABLE 4.3-1

Maximun Slenderness Ratio (all = allowable)
For Compression member Slenderness Ratio(L/r)all = 200
For Tension member Slenderness Ratio(L/r)all = 240

Data Member

Yield Stress: Fy=50 ksi
Modulus of Elasticity: E=29000 ksi
Area $=0.307$ in^2; $\mathrm{k}=0.318$ inches
Inertia $x=0.007$ in $^{\wedge} 4, \mathrm{ly}=0.105 \mathrm{in}^{\wedge} 4$
$r x=0.16 \mathrm{in} ; r y=0.16 \mathrm{in} ; \mathrm{y}=0.313 \mathrm{in}$
$\mathrm{rz}=0.156 \mathrm{in} ; \mathrm{Qs}=1.000$
Spacing between chord angles $=0.500$ in $=1 / 2^{\prime \prime}$
Combination; [SW=Self Weight; F=Factor]
COMB1 $=1.00 x D L+1.00 x L L+[S W ~ F=1.00]$
COMB2 $=$ Not Active or Null this Combination
COMB3 $=1.00 \times L L+[$ SW F=1.00]
COMB4 $=0.60 \times D L+1.00 \times U P+[S W F=0.60]$

Summary Combination Maximun Results

COMB	T. FORCE Kips	C. FORCE Kips	SHEAR Kips	MOM(Mi) K-in	MOM(Me) K-in
COMB1	2.251	0.000	0.000	0.000	0.000
COMB2	0.000	0.000	0.000	0.000	0.000
COMB3	1.869	0.000	0.000	0.000	0.000
COMB4	0.000	0.793	0.000	0.000	0.000

Max. Local Shear $(\mathrm{V})=0.000000$ Kips; Location in COMB4
Max. Moment $(\mathrm{Me})=0.000000 \mathrm{~K}$-ft; Location in COMB4
Max. Moment $(\mathrm{Mi})=0.000000$ K-ft; Location in COMB4
Max. Tension = 2.251 Kips; Location in COMB1
Max. Compresion $=0.793$ Kips; Location in COMB4
Original COMPRESION = YES (Use for internal information only)

Location of Reaction of Force

Max. Reation (Comb. \#4)= -1.894 Kips-Use in web member w/Tension
Max. Reation (Comb. \#1) $=4.207$ Kips-Use in web member w/Compr.

For Web Member Check 25\% of Reaction.

Comp=0.793; Tens=2.251; seno = 0.865; Max. 25\% Reaction
Vertical Shear(Tens) $=1.947$; Vertical Shear(Comp) $=0.686$
Max. Tension = 2.251 Kips;(Not Change)
Max. Comp = 1.052 Kips (Change)

Slenderness Ratio

k For Calculation Fcr per Table 4.3-1
(Comp.) Kx=0.75; Ky=0.90; Kz=0.00

Max. Axial Force Top \& Bottom Chord Local

Max. Compr (top chord) force $=15.790$ Kips in Member \#7; Comb1
Max. Tension (top chord) force $=6.361$ Kips in Member \#7; Comb4
Max. Compr (Bottom chord) force = 6.363 Kips in Member \#20; Comb4
Max. Tension (Bottom chord) force $=15.790$ Kips in Member \#20; Comb1

CHECK SLENDERNESS RATIOS

S.R. $x=\left(L^{*} 12\right) / r x=\left(1.661^{*} 12\right) / 0.156=127.600$
S.R. $y=\left(L^{*} 12\right) / r y=\left(1.661^{*} 12\right) / 0.156=127.600$
S.R. $z=\left(L^{*} 12\right) / r z=\left(1.661^{*} 12\right) / 0.156=127.600$

Control $=127.600$
Comp. Ratio $=$ Control/200 $=127.60 / 200=0.64$
Comp. Status: $0.64<1.00 \ll--$ OK
Tens. Ratio $=$ Control/ $240=127.60 / 240=0.53$
Tens. Status: $0.53<1.00 \ll-$ OK

CHECK COMPRESSION (4.2-4)

Shim, fillers or ties: NOT
S.R. $x=\left(K x^{*} L^{*} 12\right) / r x=\left(0.750^{*} 1.66^{*} 12\right) / 0.156=95.700$
S.R. $y=\left(k y^{*} L^{*} 12\right) / r y=\left(0.900^{*} 1.66^{*} 12\right) / 0.156=114.840$

SLRgov=114.84
Fy=50.00 ksi;
Area=0.31 in^2;Comp=1.05 kips; fa=Comp/Area=3.43 ksi
$\mathrm{Fe}=21.70 \mathrm{ksi} ; \mathrm{Fcr}=19.03 \mathrm{ksi}$
Fcr= $19.03 \mathrm{ksi} ;$ Fa=0.6Fcr= 11.42 ksi
IRc=fa/Fa=3.428/11.420=0.300
Comp. Status: $0.30<=1.00 \ll-$ OK
CHECK TENSION (Eq. 4.2-2)
$\mathrm{ft}=$ Tens \times factor/Area $=(2.251 \times 1.000) / 0.307=7.337 \mathrm{ksi}$
$\mathrm{Ft}=0.6(\mathrm{Fy})=0.6 * 50.000=30.000 \mathrm{ksi}$
Ratio $=\mathrm{ft} / \mathrm{Ft}=7.34 / 30.00=0.25$
Status: $0.25<1.00 \ll--$ OK

WELDING WEB MEMBER

Strength of E70XX electrodes: Fexx=70 ksi
Force=2.251; weld size $=1 / 8^{\prime \prime}$
Lenght weld $=$ Force \times OMEGAw/(2 * Fnw x tef)
Lenght weld $=2.251 \times 2.0 /(2 \times 42.000 .185)=0.290 \mathrm{in}$.
Use: $1 / 8$ " ; 2 inches Both end (total lenght) [But use 1 in . Min. each leg of each end]
CHECK ECCENTRICITY (4.5.4)
Woking point in both end: 0.0in. OK
This is important to fabrication.

DESIGN MEMBER

INPUT FORM (ASD) Revision SJI 100-2020
Member Number = 45
Serial $=\mathrm{K}$
Member name = Interior web member
Type = Single(2)
Section = 0
Designation $=\mathrm{R} 5 / 8 ; \mathrm{A}=0.307^{\wedge} 2 ; \mathrm{Fy}=50 \mathrm{ksi}$
Reinforcement = NA;
Span design = 260.00 in
Lenght Member = $1^{\prime}-715 / 16 "=1.661 \mathrm{ft}$. $=19.94 \mathrm{in}$.
Tension \& Compression Factor Design $=1.000$
Max. Code Check Ratio = 1.00
Ω (Omega) $=1.67=1 / 1.67=0.6$; Spec. Section 4.2.3 Eq. 4.2
Omega Welding $=2.00$ Ref. SJI Spec 4.2.3.4
Min. Thicknees Material $=1 / 8^{\prime \prime}=0.125 \mathrm{in}$.
Weld Size(tw) $=1 / 8^{\prime \prime}=0.185 \mathrm{in} .=2.960$ (Weld Throat for Rod)

EFFECTIVE SLENDERNESS RATIOS TABLE 4.3-1

Maximun Slenderness Ratio (all = allowable)
For Compression member Slenderness Ratio(L/r)all = 200
For Tension member Slenderness Ratio(L/r)all = 240

Data Member

Yield Stress: Fy=50 ksi
Modulus of Elasticity: E=29000 ksi
Area $=0.307$ in^2; $\mathrm{k}=0.318$ inches
Inertia $x=0.007$ in $^{\wedge} 4, \mathrm{ly}=0.105 \mathrm{in}^{\wedge} 4$
$r x=0.16 \mathrm{in} ; r y=0.16 \mathrm{in} ; \mathrm{y}=0.313 \mathrm{in}$
$\mathrm{rz}=0.156 \mathrm{in} ; \mathrm{Qs}=1.000$
Spacing between chord angles $=0.500$ in $=1 / 2^{\prime \prime}$
Combination; [SW=Self Weight; F=Factor]
COMB1 $=1.00 x D L+1.00 x L L+[S W ~ F=1.00]$
COMB2 $=$ Not Active or Null this Combination
COMB3 $=1.00 \times L L+[$ SW F=1.00]
COMB4 $=0.60 \times D L+1.00 \times U P+[S W F=0.60]$

Summary Combination Maximun Results

COMB	T. FORCE Kips	C. FORCE Kips	SHEAR Kips	MOM(Mi) K-in	MOM(Me) K-in
COMB1	0.000	2.933	0.000	0.000	0.000
COMB2	0.000	0.000	0.000	0.000	0.000
COMB3	0.000	2.434	0.000	0.000	0.000
COMB4	1.171	0.000	0.000	0.000	0.000

Max. Local Shear $(\mathrm{V})=0.000000$ Kips; Location in COMB4
Max. Moment $(\mathrm{Me})=0.000000 \mathrm{~K}$-ft; Location in COMB4
Max. Moment $(\mathrm{Mi})=0.000000$ K-ft; Location in COMB4
Max. Tension = 1.171 Kips ; Location in COMB4
Max. Compresion = 2.933 Kips; Location in COMB1
Original COMPRESION = YES (Use for internal information only)

Location of Reaction of Force

Max. Reation (Comb. \#4)= -1.894 Kips-Use in web member w/Tension
Max. Reation (Comb. \#1) $=4.207$ Kips-Use in web member w/Compr.

For Web Member Check 25\% of Reaction.

Comp=2.933; Tens=1.171; seno = 0.865; Max. 25\% Reaction
Vertical Shear(Tens) $=1.012$; Vertical Shear(Comp) $=2.536$
Max. Tension = 1.171 Kips;(Not Change)
Max. Compresion = 2.933 Kips; (Not Change)

Slenderness Ratio

k For Calculation Fcr per Table 4.3-1
(Comp.) Kx=0.75; Ky=0.90; Kz=0.00

Max. Axial Force Top \& Bottom Chord Local

Max. Compr (top chord) force $=15.790$ Kips in Member \#7; Comb1
Max. Tension (top chord) force $=6.361$ Kips in Member \#7; Comb4
Max. Compr (Bottom chord) force = 6.363 Kips in Member \#20; Comb4
Max. Tension (Bottom chord) force $=15.790$ Kips in Member \#20; Comb1

CHECK SLENDERNESS RATIOS

S.R. $x=\left(L^{*} 12\right) / r x=\left(1.661^{*} 12\right) / 0.156=127.600$
S.R. $y=\left(L^{*} 12\right) / r y=\left(1.661^{*} 12\right) / 0.156=127.600$
S.R. $z=\left(L^{*} 12\right) / r z=\left(1.661^{*} 12\right) / 0.156=127.600$

Control $=127.600$
Comp. Ratio $=$ Control/200 $=127.60 / 200=0.64$
Comp. Status: $0.64<1.00 \ll--$ OK
Tens. Ratio $=$ Control/ $240=127.60 / 240=0.53$
Tens. Status: $0.53<1.00 \ll-$ OK

CHECK COMPRESSION (4.2-4)

Shim, fillers or ties: NOT
S.R. $x=\left(K x^{*} L^{*} 12\right) / r x=\left(0.750^{*} 1.66^{*} 12\right) / 0.156=95.700$
S.R. $y=\left(k y^{*} L^{*} 12\right) / r y=\left(0.900^{*} 1.66^{*} 12\right) / 0.156=114.840$

SLRgov=114.84
Fy=50.00 ksi;
Area=0.31 in^2;Comp=2.93 kips; fa=Comp/Area=9.56 ksi
$\mathrm{Fe}=21.70 \mathrm{ksi} ; \mathrm{Fcr}=19.03 \mathrm{ksi}$
Fcr= $19.03 \mathrm{ksi} ;$ Fa=0.6Fcr= 11.42 ksi
IRc=fa/Fa=9.560/11.420=0.840
Comp. Status: 0.84 <= 1.00 <<-- OK
CHECK TENSION (Eq. 4.2-2)
$\mathrm{ft}=$ Tens \times factor/Area $=(1.171 \times 1.000) / 0.307=3.815 \mathrm{ksi}$
$\mathrm{Ft}=0.6(\mathrm{Fy})=0.6 * 50.000=30.000 \mathrm{ksi}$
Ratio $=\mathrm{ft} / \mathrm{Ft}=3.82 / 30.00=0.13$
Status: $0.13<1.00 \ll-$ OK

WELDING WEB MEMBER

Strength of E70XX electrodes: Fexx=70 ksi
Force=2.933; weld size $=1 / 8^{\prime \prime}$
Lenght weld $=$ Force \times OMEGAw/(2 * Fnw x tef)
Lenght weld $=2.933 \times 2.0 /(2 \times 42.000 .185)=0.377 \mathrm{in}$.
Use: $1 / 8$ " ; 2 inches Both end (total lenght) [But use 1 in . Min. each leg of each end]
CHECK ECCENTRICITY (4.5.4)
Woking point in both end: 0.0in. OK
This is important to fabrication.

DESIGN MEMBER

INPUT FORM (ASD) Revision SJI 100-2020
Member Number = 46
Serial $=\mathrm{K}$
Member name = Interior web member
Type = Single(2)
Section = 0
Designation $=\mathrm{R} 3 / 4 ; \mathrm{A}=0.442^{\wedge} 2 ; \mathrm{Fy}=50 \mathrm{ksi}$
Reinforcement = NA;
Span design = 260.00 in
Lenght Member = $1^{\prime}-715 / 16^{\prime \prime}=1.661 \mathrm{ft}$. $=19.94 \mathrm{in}$.
Tension \& Compression Factor Design $=1.000$
Max. Code Check Ratio $=1.00$
Ω (Omega) $=1.67=1 / 1.67=0.6$; Spec. Section 4.2.3 Eq. 4.2
Omega Welding $=2.00$ Ref. SJI Spec 4.2.3.4
Min. Thicknees Material $=1 / 8^{\prime \prime}=0.125 \mathrm{in}$.
Weld Size(tw) $=1 / 8^{\prime \prime}=0.200 \mathrm{in} .=3.200$ (Weld Throat for Rod)

EFFECTIVE SLENDERNESS RATIOS TABLE 4.3-1

Maximun Slenderness Ratio (all = allowable)
For Compression member Slenderness Ratio(L/r)all = 200
For Tension member Slenderness Ratio(L/r)all = 240

Data Member

Yield Stress: Fy=50 ksi
Modulus of Elasticity: E=29000 ksi
Area $=0.442$ in^2; $\mathrm{k}=0.318$ inches
Inertia $x=0.016$ in $^{\wedge} 4, \mathrm{ly}=0.188$ in $^{\wedge} 4$
$r x=0.19 \mathrm{in} ; r y=0.19 \mathrm{in} ; \mathrm{y}=0.375 \mathrm{in}$
$\mathrm{rz}=0.188 \mathrm{in} ; \mathrm{Qs}=1.000$
Spacing between chord angles $=0.500$ in $=1 / 2^{\prime \prime}$
Combination; [SW=Self Weight; F=Factor]
COMB1 $=1.00 x D L+1.00 x L L+[S W ~ F=1.00]$
COMB2 $=$ Not Active or Null this Combination
COMB3 $=1.00 \times L L+[$ SW F=1.00]
COMB4 $=0.60 \times D L+1.00 \times U P+[S W F=0.60]$

Summary Combination Maximun Results

COMB	T. FORCE Kips	C. FORCE Kips	SHEAR Kips	MOM(Mi) K-in	MOM(Me) K-in
COMB1	2.934	0.000	0.000	0.000	0.000
COMB2	0.000	0.000	0.000	0.000	0.000
COMB3	2.436	0.000	0.000	0.000	0.000
COMB4	0.000	1.163	0.000	0.000	0.000

Max. Local Shear $(\mathrm{V})=0.000000$ Kips; Location in COMB4
Max. Moment $(\mathrm{Me})=0.000000 \mathrm{~K}$-ft; Location in COMB4
Max. Moment (Mi) $=0.000000$ K-ft; Location in COMB4
Max. Tension = 2.934 Kips; Location in COMB1
Max. Compresion = 1.163 Kips; Location in COMB4
Original COMPRESION = YES (Use for internal information only)

Location of Reaction of Force

Max. Reation (Comb. \#4)= -1.894 Kips-Use in web member w/Tension
Max. Reation (Comb. \#1) $=4.207$ Kips-Use in web member w/Compr.

For Web Member Check 25\% of Reaction.

Comp=1.163; Tens=2.934; seno = 0.865; Max. 25\% Reaction
Vertical Shear(Tens) $=2.537$; Vertical Shear(Comp) $=1.006$
Max. Tension = 2.934 Kips; (Not Change)
Max. Comp = 1.052 Kips (Change)

Slenderness Ratio

k For Calculation Fcr per Table 4.3-1
(Comp.) Kx=0.75; Ky=0.90; Kz=0.00

Max. Axial Force Top \& Bottom Chord Local

Max. Compr (top chord) force $=15.790$ Kips in Member \#7; Comb1
Max. Tension (top chord) force $=6.361$ Kips in Member \#7; Comb4
Max. Compr (Bottom chord) force = 6.363 Kips in Member \#20; Comb4
Max. Tension (Bottom chord) force $=15.790$ Kips in Member \#20; Comb1

CHECK SLENDERNESS RATIOS

S.R. $x=\left(L^{*} 12\right) / r x=\left(1.661^{*} 12\right) / 0.188=106.333$
S.R. $y=\left(L^{*} 12\right) / r y=\left(1.661^{*} 12\right) / 0.188=106.333$
S.R. $z=\left(L^{*} 12\right) / r z=\left(1.661^{*} 12\right) / 0.188=106.333$

Control $=106.333$
Comp. Ratio $=$ Control/200 $=106.33 / 200=0.53$
Comp. Status: $0.53<1.00 \ll--$ OK
Tens. Ratio $=$ Control/ $240=106.33 / 240=0.44$
Tens. Status: 0.44 < $1.00 \ll-$ OK

CHECK COMPRESSION (4.2-4)

Shim, fillers or ties: NOT
S.R. $x=\left(K x^{*} L^{*} 12\right) / r x=\left(0.750^{*} 1.66^{*} 12\right) / 0.188=79.750$
S.R. $y=\left(k y^{*} L^{*} 12\right) / r y=\left(0.900^{*} 1.66^{*} 12\right) / 0.188=95.700$

SLRgov=95.70
Fy=50.00 ksi;
Area=0.44 in^2;Comp=1.05 kips; fa=Comp/Area=2.38 ksi
$\mathrm{Fe}=31.25 \mathrm{ksi} ; \mathrm{Fcr}=25.59 \mathrm{ksi}$
Fcr=25.59 ksi; Fa=0.6Fcr= 15.36 ksi
IRc=fa/Fa=2.381/15.357=0.160
Comp. Status: 0.16 <= 1.00 <<-- OK
CHECK TENSION (Eq. 4.2-2)
$\mathrm{ft}=$ Tens \times factor/Area $=(2.934 \times 1.000) / 0.442=6.640 \mathrm{ksi}$
$\mathrm{Ft}=0.6(\mathrm{Fy})=0.6 * 50.000=30.000 \mathrm{ksi}$
Ratio $=\mathrm{ft} / \mathrm{Ft}=6.64 / 30.00=0.22$
Status: $0.22<1.00$ <<-- OK

WELDING WEB MEMBER

Strength of E70XX electrodes: Fexx=70 ksi
Force=2.934; weld size $=1 / 8^{\prime \prime}$
Lenght weld $=$ Force \times OMEGAw/(2 * Fnw x tef)
Lenght weld $=2.934 \times 2.0 /(2 \times 42.000 .200)=0.349 \mathrm{in}$.
Use: $1 / 8$ " ; 2 inches Both end (total lenght) [But use 1 in . Min. each leg of each end]
CHECK ECCENTRICITY (4.5.4)
Woking point in both end: 0.0in. OK
This is important to fabrication.

DESIGN MEMBER

INPUT FORM (ASD) Revision SJI 100-2020
Member Number = 47
Serial $=\mathrm{K}$
Member name $=$ Interior First web member
Type = Single(2)
Section = 0
Designation $=\mathrm{R} 3 / 4 ; \mathrm{A}=0.442^{\wedge} 2 ; \mathrm{Fy}=50 \mathrm{ksi}$
Reinforcement = NA;
Span design = 260.00 in
Lenght Member = $1^{\prime}-715 / 16 "=1.661 \mathrm{ft}$. $=19.94 \mathrm{in}$.
Tension \& Compression Factor Design $=1.000$
Max. Code Check Ratio $=1.00$
Ω (Omega) $=1.67=1 / 1.67=0.6$; Spec. Section 4.2.3 Eq. 4.2
Omega Welding $=2.00$ Ref. SJI Spec 4.2.3.4
Min. Thicknees Material $=1 / 8^{\prime \prime}=0.125 \mathrm{in}$.
Weld Size(tw) $=1 / 8^{\prime \prime}=0.200 \mathrm{in} .=3.200$ (Weld Throat for Rod)

EFFECTIVE SLENDERNESS RATIOS TABLE 4.3-1

Maximun Slenderness Ratio (all = allowable)
For Compression member Slenderness Ratio(L/r)all = 200
For Tension member Slenderness Ratio(L/r)all = 240

Data Member

Yield Stress: Fy=50 ksi
Modulus of Elasticity: E=29000 ksi
Area $=0.442$ in^2; $\mathrm{k}=0.318$ inches
Inertia $x=0.016$ in $^{\wedge} 4, \mathrm{ly}=0.188$ in $^{\wedge} 4$
$r x=0.19 \mathrm{in} ; r y=0.19 \mathrm{in} ; \mathrm{y}=0.375 \mathrm{in}$
$r z=0.188 \mathrm{in} ;$ Qs $=1.000$
Spacing between chord angles $=0.500$ in $=1 / 2^{\prime \prime}$
Combination; [SW=Self Weight; F=Factor]
COMB1 $=1.00 x D L+1.00 x L L+[S W ~ F=1.00]$
COMB2 $=$ Not Active or Null this Combination
COMB3 $=1.00 \times L L+[$ SW F=1.00]
COMB4 $=0.60 \times D L+1.00 \times U P+[S W F=0.60]$

Summary Combination Maximun Results

COMB	T. FORCE Kips	C. FORCE Kips	SHEAR Kips	MOM(Mi) K-in	MOM(Me) K-in
COMB1	0.000	3.865	0.000	0.000	0.000
COMB2	0.000	0.000	0.000	0.000	0.000
COMB3	0.000	3.208	0.000	0.000	0.000
COMB4	1.657	0.000	0.000	0.000	0.000

Max. Local Shear $(\mathrm{V})=0.000000$ Kips; Location in COMB4
Max. Moment $(\mathrm{Me})=0.000000 \mathrm{~K}$-ft; Location in COMB4
Max. Moment $(\mathrm{Mi})=0.000000$ K-ft; Location in COMB4
Max. Tension = 1.657 Kips; Location in COMB4
Max. Compresion = 3.865 Kips; Location in COMB1
Original COMPRESION = YES (Use for internal information only)

Location of Reaction of Force

Max. Reation (Comb. \#4)= -1.894 Kips-Use in web member w/Tension
Max. Reation (Comb. \#1) $=4.207$ Kips-Use in web member w/Compr.

For Web Member Check 25\% of Reaction.

Comp=3.865; Tens=1.657; seno = 0.865; Max. 25\% Reaction
Vertical Shear(Tens) $=1.433$; Vertical Shear(Comp) $=3.343$
Max. Tension = 1.657 Kips; (Not Change)
Max. Compresion = 3.865 Kips; (Not Change)

Slenderness Ratio

k For Calculation Fcr per Table 4.3-1
(Comp.) Kx=0.75; Ky=0.90; Kz=0.00

Max. Axial Force Top \& Bottom Chord Local

Max. Compr (top chord) force $=15.790$ Kips in Member \#7; Comb1
Max. Tension (top chord) force $=6.361$ Kips in Member \#7; Comb4
Max. Compr (Bottom chord) force = 6.363 Kips in Member \#20; Comb4
Max. Tension (Bottom chord) force $=15.790$ Kips in Member \#20; Comb1

CHECK SLENDERNESS RATIOS

S.R. $x=\left(L^{*} 12\right) / r x=\left(1.661^{*} 12\right) / 0.188=106.333$
S.R. $y=\left(L^{*} 12\right) / r y=\left(1.661^{*} 12\right) / 0.188=106.333$
S.R. $z=\left(L^{*} 12\right) / r z=\left(1.661^{*} 12\right) / 0.188=106.333$

Control $=106.333$
Comp. Ratio $=$ Control/200 $=106.33 / 200=0.53$
Comp. Status: $0.53<1.00 \ll-$ OK
Tens. Ratio $=$ Control/ $240=106.33 / 240=0.44$
Tens. Status: 0.44 < $1.00 \ll-$ OK

CHECK COMPRESSION (4.2-4)

Shim, fillers or ties: NOT
S.R. $x=\left(K x^{*} L^{*} 12\right) / r x=\left(0.750^{*} 1.66^{*} 12\right) / 0.188=79.750$
S.R. $y=\left(k y^{*} L^{*} 12\right) / r y=\left(0.900^{*} 1.66^{*} 12\right) / 0.188=95.700$

SLRgov=95.70
Fy=50.00 ksi;
Area=0.44 in^2;Comp=3.87 kips; fa=Comp/Area=8.75 ksi
Fe=31.25 ksi; Fcr=25.59 ksi
Fcr=25.59 ksi; Fa=0.6Fcr= 15.36 ksi
IRc=fa/Fa=8.750/15.357=0.570
Comp. Status: 0.57 <= 1.00 <<-- OK
CHECK TENSION (Eq. 4.2-2)
$\mathrm{ft}=$ Tens \times factor/Area $=(1.657 \times 1.000) / 0.442=3.751 \mathrm{ksi}$
$\mathrm{Ft}=0.6(\mathrm{Fy})=0.6 * 50.000=30.000 \mathrm{ksi}$
Ratio $=\mathrm{ft} / \mathrm{Ft}=3.75 / 30.00=0.13$
Status: $0.13<1.00 \ll-$ OK

WELDING WEB MEMBER

Strength of E70XX electrodes: Fexx=70 ksi
Force=3.865; weld size $=1 / 8^{\prime \prime}$
Lenght weld = Force \times OMEGAw/(2 * Fnw x tef)
Lenght weld $=3.865 \times 2.0 /(2 \times 42.000 .200)=0.460 \mathrm{in}$.
Use: $1 / 8$ " ; 2 inches Both end (total lenght) [But use 1 in . Min. each leg of each end]
CHECK ECCENTRICITY (4.5.4)
Woking point in both end: 0.0in. OK
This is important to fabrication.

DESIGN MEMBER

INPUT FORM (ASD) Revision SJI 100-2020
Member Number = 48
Serial $=\mathrm{K}$
Member name = Aux. right or SV web member
Type = Single(2)
Section = 0
Designation $=\mathrm{R} 1 / 2 ; \mathrm{A}=0.196^{\wedge} 2 ; \mathrm{Fy}=50 \mathrm{ksi}$
Reinforcement = NA;
Span design = 260.00 in
Lenght Member = $1^{\prime}-103 / 16$ " $=1.849 \mathrm{ft}$. $=22.19 \mathrm{in}$.
Tension \& Compression Factor Design $=1.000$
Max. Code Check Ratio $=1.00$
Ω (Omega) $=1.67=1 / 1.67=0.6$; Spec. Section 4.2.3 Eq. 4.2
Omega Welding $=2.00$ Ref. SJI Spec 4.2.3.4
Min. Thicknees Material $=1 / 8^{\prime \prime}=0.125 \mathrm{in}$.
Weld Size(tw) $=1 / 8^{\prime \prime}=0.170 \mathrm{in} .=2.720$ (Weld Throat for Rod)

EFFECTIVE SLENDERNESS RATIOS TABLE 4.3-1

Maximun Slenderness Ratio (all = allowable)
For Compression member Slenderness Ratio(L/r)all = 200
For Tension member Slenderness Ratio(L/r)all = 240

Data Member

Yield Stress: Fy=50 ksi
Modulus of Elasticity: E=29000 ksi
Area $=0.196$ in^2; $k=0.318$ inches
Inertia $x=0.003$ in^4, ly $=0.052$ in^4
$r x=0.13 \mathrm{in} ; r y=0.13 \mathrm{in} ; \mathrm{y}=0.250 \mathrm{in}$
$\mathrm{rz}=0.125 \mathrm{in} ; \mathrm{Qs}=1.000$
Spacing between chord angles $=0.500$ in $=1 / 2^{\prime \prime}$
Combination; [SW=Self Weight; F=Factor]
COMB1 $=1.00 x D L+1.00 x L L+[S W ~ F=1.00]$
COMB2 $=$ Not Active or Null this Combination
COMB3 $=1.00 \times L L+[$ SW F=1.00]
COMB4 $=0.60 \times D L+1.00 \times U P+[S W F=0.60]$

Summary Combination Maximun Results

COMB	T. FORCE Kips	C. FORCE Kips	SHEAR Kips	MOM(Mi) K-in	MOM(Me) K-in
COMB1	0.000	0.761	0.000	0.000	0.000
COMB2	0.000	0.000	0.000	0.000	0.000
COMB3	0.000	0.630	0.000	0.000	0.000
COMB4	0.425	0.000	0.000	0.000	0.000

Max. Local Shear $(\mathrm{V})=0.000000$ Kips; Location in COMB4
Max. Moment $(\mathrm{Me})=0.000000 \mathrm{~K}$-ft; Location in COMB4
Max. Moment $(\mathrm{Mi})=0.000000$ K-ft; Location in COMB4
Max. Tension $=0.425$ Kips; Location in COMB4
Max. Compresion $=0.761$ Kips; Location in COMB1
Original COMPRESION = YES (Use for internal information only)

Location of Reaction of Force

Max. Reation (Comb. \#4)= -1.894 Kips-Use in web member w/Tension
Max. Reation (Comb. \#1) $=4.207$ Kips-Use in web member w/Compr.

Slenderness Ratio

k For Calculation Fcr per Table 4.3-1
(Comp.) $\mathrm{Kx}=0.75$; $\mathrm{Ky}=0.90$; $\mathrm{Kz}=0.00$

Max. Axial Force Top \& Bottom Chord Local

Max. Compr (top chord) force = 15.790 Kips in Member \#7; Comb1 Max. Tension (top chord) force $=6.361$ Kips in Member \#7; Comb4 Max. Compr (Bottom chord) force $=6.363$ Kips in Member \#20; Comb4 Max. Tension (Bottom chord) force $=15.790$ Kips in Member \#20; Comb1

For Interior Vertical Member.

gravity load +1/2 of 1.0\% of Max. Top Chord Axial Force
Tension $=\mathrm{g}+1 / 2\left(1 \%{ }^{*}\right.$ Pep $)=$
Tension $=0.425$ Kips $+0.5(0.01 * 3.070100$ Kips $)=0.440$ Kips
Max. Tension $=0.440 \mathrm{Kips} ;($ Change $)$
Compresion $=g+1 / 2(1 \% *$ Pep $)=$
Compresion $=0.761$ Kips $+0.5\left(0.01^{*} 15.789752\right.$ Kips $)=0.796$ Kips
Max. Compresion = 0.840 Kips;(Change)

CHECK SLENDERNESS RATIOS

S.R. $x=\left(L^{*} 12\right) / r x=\left(1.849^{*} 12\right) / 0.125=177.500$
S.R. $y=\left(L^{*} 12\right) / r y=\left(1.849^{*} 12\right) / 0.125=177.500$
S.R. $z=\left(L^{*} 12\right) / r z=\left(1.849^{*} 12\right) / 0.125=177.500$

Control $=177.500$
Comp. Ratio $=$ Control/200 $=177.50 / 200=0.89$
Comp. Status: $0.89<1.00 \ll--$ OK
Tens. Ratio $=$ Control/ $240=177.50 / 240=0.74$
Tens. Status: $0.74<1.00 \ll-$ OK

CHECK COMPRESSION (4.2-4)

Shim, fillers or ties: NOT
S.R. $x=\left(K x^{*} L^{*} 12\right) / r x=\left(0.750^{*} 1.85^{*} 12\right) / 0.125=133.125$
S.R. $y=\left(k y^{*} L^{*} 12\right) / r y=\left(0.900^{*} 1.85^{*} 12\right) / 0.125=159.750$

SLRgov=159.75
Fy=50.00 ksi;
Area=0.20 in^2;Comp=0.84 kips; fa=Comp/Area=4.28 ksi
$\mathrm{Fe}=11.22 \mathrm{ksi}$; Fcr=9.84 ksi
Fcr $=9.84 \mathrm{ksi} ;$ Fa=0.6Fcr= $=5.90 \mathrm{ksi}$
IRc=fa/Fa=4.279/5.902=0.730
Comp. Status: 0.73 <= 1.00 <<-- OK

CHECK TENSION (Eq. 4.2-2)

$\mathrm{ft}=$ Tens \times factor/Area $=(0.440 \times 1.000) / 0.196=2.242 \mathrm{ksi}$
$\mathrm{Ft}=0.6(\mathrm{Fy})=0.6 * 50.000=30.000 \mathrm{ksi}$
Ratio $=\mathrm{ft} / \mathrm{Ft}=2.24 / 30.00=0.07$
Status: $0.07<1.00 \ll-$ OK

WELDING WEB MEMBER

Strength of E70XX electrodes: Fexx=70 ksi
Force $=0.840$; weld size $=1 / 8^{\prime \prime}$
Lenght weld $=$ Force \times OMEGAw/(2 * Fnw x tef)
Lenght weld $=0.840 \times 2.0 /(2 \times 42.000 .170)=0.118 \mathrm{in}$.
Use: $1 / 8^{\prime \prime} ; 2$ inches Both end (total lenght) [But use 1 in . Min. each leg of each end]
CHECK ECCENTRICITY (4.5.4)
Woking point in both end: 0.0in. OK
This is important to fabrication.

DESIGN MEMBER

INPUT FORM (ASD) Revision SJI 100-2020
Member Number = 49
Serial $=\mathrm{K}$
Member name = Right end web member
Type = Single(2)
Section = 0
Designation $=\mathrm{R} 7 / 8 ; \mathrm{A}=0.601^{\wedge} 2 ; \mathrm{Fy}=50 \mathrm{ksi}$
Reinforcement = NA;
Span design = 260.00 in
Lenght Member $=2^{\prime}-109 / 16^{\prime \prime}=2.880 \mathrm{ft}$. $=34.56 \mathrm{in}$.
Tension \& Compression Factor Design $=1.000$
Max. Code Check Ratio $=1.00$
Ω (Omega) $=1.67=1 / 1.67=0.6$; Spec. Section 4.2.3 Eq. 4.2
Omega Welding $=2.00$ Ref. SJI Spec 4.2.3.4
Min. Thicknees Material $=1 / 8^{\prime \prime}=0.125 \mathrm{in}$.
Weld Size(tw) $=1 / 8^{\prime \prime}=0.215 \mathrm{in} .=3.440$ (Weld Throat for Rod)

EFFECTIVE SLENDERNESS RATIOS TABLE 4.3-1

Maximun Slenderness Ratio (all = allowable)
For Compression member Slenderness Ratio(L/r)all = 200
For Tension member Slenderness Ratio(L/r)all = 240

Data Member

Yield Stress: Fy=50 ksi
Modulus of Elasticity: E=29000 ksi
Area $=0.601$ in^2; $\mathrm{k}=0.318$ inches
Inertia $x=0.029$ in $^{\wedge} 4, \mathrm{ly}=0.313 \mathrm{in}^{\wedge} 4$
$r x=0.22 \mathrm{in} ; r y=0.22 \mathrm{in} ; \mathrm{y}=0.438 \mathrm{in}$
$\mathrm{rz}=0.219 \mathrm{in} ;$ Qs $=1.000$
Spacing between chord angles $=0.500$ in $=1 / 2^{\prime \prime}$
Combination; [SW=Self Weight; F=Factor]
COMB1 $=1.00 x D L+1.00 x L L+[S W ~ F=1.00]$
COMB2 $=$ Not Active or Null this Combination
COMB3 $=1.00 x L L+[$ SW F=1.00]
COMB4 $=0.60 \times D L+1.00 \times U P+[S W F=0.60]$

Summary Combination Maximun Results

COMB	T. FORCE Kips	C. FORCE Kips	SHEAR Kips	MOM(Mi) K-in	MOM(Me) K-in
COMB1	7.932	0.000	0.000	0.000	0.000
COMB2	0.000	0.000	0.000	0.000	0.000
COMB3	6.583	0.000	0.000	0.000	0.000
COMB4	0.000	3.540	0.000	0.000	0.000

Max. Local Shear $(\mathrm{V})=0.000000$ Kips; Location in COMB4
Max. Moment $(\mathrm{Me})=0.000000 \mathrm{~K}$-ft; Location in COMB4
Max. Moment $(\mathrm{Mi})=0.000000$ K-ft; Location in COMB4
Max. Tension = 7.932 Kips; Location in COMB1
Max. Compresion = 3.540 Kips; Location in COMB4
Original COMPRESION = YES (Use for internal information only)

Location of Reaction of Force

Max. Reation (Comb. \#4)= -1.894 Kips-Use in web member w/Tension
Max. Reation (Comb. \#1) $=4.207$ Kips-Use in web member w/Compr.

For Web Member Check 25\% of Reaction.

Comp=3.540; Tens=7.932; seno = 0.498; Max. 25\% Reaction
Vertical Shear(Tens) $=3.949$; Vertical Shear(Comp) $=1.762$
Max. Tension = 7.932 Kips; (Not Change)
Max. Compresion = 3.540 Kips; (Not Change)

Slenderness Ratio

k For Calculation Fcr per Table 4.3-1
(Comp.) $\mathrm{Kx}=0.75$; $\mathrm{Ky}=0.80$; Kz=0.00

Max. Axial Force Top \& Bottom Chord Local

Max. Compr (top chord) force $=15.790$ Kips in Member \#7; Comb1
Max. Tension (top chord) force = 6.361 Kips in Member \#7; Comb4
Max. Compr (Bottom chord) force = 6.363 Kips in Member \#20; Comb4
Max. Tension (Bottom chord) force $=15.790$ Kips in Member \#20; Comb1

CHECK SLENDERNESS RATIOS

S.R. $x=\left(L^{*} 12\right) / r x=\left(2.880^{*} 12\right) / 0.219=158.000$
S.R. $y=\left(L^{*} 12\right) / r y=\left(2.880^{*} 12\right) / 0.219=158.000$
S.R. $z=\left(L^{*} 12\right) / r z=(2.880 * 12) / 0.219=158.000$

Control $=158.000$
Comp. Ratio $=$ Control $/ 200=158.00 / 200=0.79$
Comp. Status: $0.79<1.00 \ll-$ OK
Tens. Ratio $=$ Control $/ 240=158.00 / 240=0.66$
Tens. Status: $0.66<1.00 \ll-$ OK

CHECK COMPRESSION (4.2-4)

Shim, fillers or ties: NOT
S.R. $x=\left(K x^{*} L^{*} 12\right) / r x=\left(0.750^{*} 2.88^{*} 12\right) / 0.219=118.500$
S.R. $y=\left(k y^{*} L^{*} 12\right) / r y=\left(0.800^{*} 2.88^{*} 12\right) / 0.219=126.400$

SLRgov=126.40
Fy $=50.00 \mathrm{ksi}$;
Area=0.60 in^2;Comp=3.54 kips; fa=Comp/Area=5.89 ksi
Fe=17.91 ksi; Fcr=15.71 ksi
Fcr=15.71 ksi; Fa=0.6Fcr= 9.43 ksi
IRc=fa/Fa=5.887/9.427=0.620
Comp. Status: $0.62<=1.00 \ll-$ OK
CHECK TENSION (Eq. 4.2-2)
$\mathrm{ft}=$ Tens \times factor/Area $=(7.932 \times 1.000) / 0.601=13.191 \mathrm{ksi}$
$\mathrm{Ft}=0.6(\mathrm{Fy})=0.6 * 50.000=30.000 \mathrm{ksi}$
Ratio $=\mathrm{ft} / \mathrm{Ft}=13.19 / 30.00=0.44$
Status: $0.44<=0.90^{* * *} \ll--$ OK
***Refer to Section 1.2B for applicationb of and the requirement for the use of the 0.90 Stress Interaction
Ratio for design check of first end web.

WELDING WEB MEMBER

Strength of E70XX electrodes: Fexx=70 ksi
Force=7.932; weld size = 1/8"
Lenght weld $=$ Force $\times \mathrm{OMEGAw} /(2$ * Fnw \times tef $)$
Lenght weld $=7.932 \times 2.0 /(2 \times 42.000 .215)=0.878$ in.
Use: $1 / 8^{\prime \prime} ; 2$ inches Both end (total lenght) [But use 1 in . Min. each leg of each end]

CHECK ECCENTRICITY (4.5.4)

Woking point in both end: 0.0in. OK
This is important to fabrication.

